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Foreword

The artificial intelligence (AI) arms race is well under way with great 
powers, secondary powers, and even non-state actors actively pursuing the 
weaponization of this technology in a variety of ways. The rate of scientific 
advancement in the various forms of military-oriented AI has increased 
markedly in recent years, and it appears now that many military profes-
sionals presume that AI applications constitute a necessary precondition 
for military success in future high-end conflict. Special Operations Forces 
(SOF) have similarly attempted to harness the power of AI, machine learn-
ing, natural language processing, and deep learning for their unique mis-
sion sets. While sound in principle, employing AI-based solutions efficiently 
and effectively first requires clear knowledge of (a) how they work, (b) the 
conditions for which are they are and are not appropriate, (c) the challenges 
of employing them in the field, and (d) how to employ them within ethical 
boundaries.

The purpose of this edited volume is to demystify the capabilities and 
limitations of AI-based military solutions. The chapters are written with the 
assumption that readers have a limited background with the underlying sci-
entific, modeling, and data science principles that make AI-based solutions 
viable. The contributors to the volume are scholars and expert practitioners 
who work closely with the Joint Special Operations University to write for 
the specific needs of the SOF community. Nevertheless, this volume has 
applicability across the U.S. Government since the SOF community operates 
under nearly the same conditions as the rest of the government sector. With 
a conversational tone and progressive learning trajectory across the chapters, 
Big Data for Generals … and Everyone Else over 40 provides an accessible 
but comprehensive overview of the concepts and considerations for making 
emerging technology a true force multiplier for the SOF enterprise.

David C. Ellis, PhD
Research Professor

Center for Adaptive and Innovative Statecraft
Joint Special Operations University
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Executive Summary

The purpose of this monograph is to help leaders and managers in the 
U.S. Special Operations Forces (SOF) enterprise become comfortable 

and conversant with the vocabulary and concepts associated with Big Data. 
It is not designed to make the reader a data scientist. Rather, it enables the 
reader to make better use of, provide the appropriate support and environ-
ments for, and more richly receive the advice of personnel who are trained 
in data science. A main finding of the research is that there is a substantial 
disconnect between the popular imagination of predictive analytics and what 
cutting edge science and technology can actually deliver. The magic of find, 
fix, finish, exploit, analyze and disseminate; social media trend analysis; the 
potential power of metadata analysis; and other powerful computer assisted 
analytic tools, such as Project Maven, seem to suggest that the military is on 
the cusp of an extraordinary era where an enemy’s behavior can be predicted 
with a high degree of probability. Perhaps this is true, but it is more likely 
not. Certainly, insight can be gleaned from trend analysis and correlations, 
but it is essential to remember that the human behaviors underlying the 
predictive analytics most everyone experiences—through Google, Amazon, 
and other providers—are very different than the human behaviors with 
which SOF contend.

The chapters reveal important insights for military and civilian leaders 
across the SOF enterprise. These include:

•	 Successful incorporation of big data will require the deliberate cre-
ation of a data management culture instead of merely adapting current 
practices.

•	 Big data is not necessarily a labor-saving activity because proper data 
science requires a teaming approach among content experts, front line 
users, and data scientists; novel challenges require specialized teams.

•	 Dashboards and preset interfaces rely on assumptions and algorithms 
that often fail to match the social dynamics underlying novel chal-
lenges such as conflict environments.

•	 Artificial intelligence (AI), machine learning (ML), and data science 
more generally all rely on algorithms, which in turn rely on con-
scious and unconscious assumptions, biases, and frames, and there 
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are inevitable limitations on data available to train algorithms and to 
process for predictive analysis.

•	 Algorithms are statistical models that, by nature, can only approxi-
mate a slice of social reality, and it is consequently problematic to 
rely upon them for decision-making tools independent of human 
reasoning.

•	 Statistical models reflect the past with the presumption that the pat-
terns detected will continue into the future, which is scientifically 
valid for closed laboratory systems, but open social systems are more 
prone to novel, often unpredictable pattern changes.

•	 Silicon Valley is a poor model for SOF as its AI-based systems rely 
on high degrees of self-reported behavior and interests that cannot 
often be replicated in SOF operating environments or processed by 
existing knowledge management practices and information technol-
ogy platforms.

•	 Accruing personnel with data science skills requires a mixture of 
incentives and non-traditional military opportunities across military, 
civilian, and contractor options, but, more importantly, leaders should 
creatively engage the larger social system of data science capabilities 
outside the military instead of owning them outright.

•	 While AI and ML seem essential to warfare, the ethical considerations 
of employing such capabilities require deep review and leader educa-
tion before employing them as kinetic options or as decision-making 
tools.

•	 Disruptive technology (e.g., quantum computing), communications 
logistics (e.g., internet access in austere environments), and elec-
tronic signatures all present significant future challenges to forward-
deployed SOF and information security, which reinforces the first SOF 
Truth that people are ultimately more important than hardware and 
that technological capability should be critically evaluated instead of 
presumed to be an essential element of deployed forces.
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Introduction

Dr. David C. Ellis

Thinking About Big Data for the Special Operations Forces 
Enterprise

We are in the midst of one of the most consequential technological 
and geopolitical shifts in recent history. Just like the U.S. leveraged 

the industrial revolution in its rise to Great Power status in the nineteenth 
century and to preeminence in the twentieth, the ongoing revolution in tech-
nology and data science could represent the opportunity for a competitor to 
achieve a similar ascent in the twenty-first. But, if harnessed correctly, this 
technological revolution could also prolong the influence, values, and order 
the U.S. has shepherded since World War II, irrespective of the growth and 
advancement of others.

Unfortunately, the language and management concepts associated with 
this new technological revolution diverge in significant ways from those 
of the industrial revolution and the way computers augmented it through 
the first decade of the twenty-first century. Though called generically and 
approachably big data, as though it is just a scaled-up version of what has 
come before, this new era actually requires leaders and managers to think 
in fundamentally new ways. The good news is that the new ways of thinking 
are not really that hard to grasp. The bad news is that those ways of thinking 
have not often been taught to most of the people now assuming leadership 
and managerial roles in the implementation of big data solutions. 

To complicate matters, those responsible for implementing big data solu-
tions in the U.S. military face two additional challenges. First, though big 
data requires new ways of thinking, legacy architectures, and data systems, 
mental models pervade the U.S. Government’s information technology (IT) 
infrastructure. In other words, it might be far easier and less costly to take 
full advantage of big data if a system can be built entirely from scratch. The 
military’s existing systems and processes stand to be among the most dif-
ficult obstacles in the efficient implementation of big data solutions, so it falls 
to leaders and managers to navigate—or choose to radically disrupt—the 
status quo.
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Second, though existing computing power is resulting in previously 
unthinkable commercial and military capability, the coming decade could 
very realistically see the development of quantum computing, a disruptive 
technology so consequential that it is impossible to forecast its true impact 
on future sociopolitical and military organization. The leader in the devel-
opment of quantum computing will accrue extraordinary advantages in 
the twenty-first century. The ability to leverage future quantum comput-
ing power depends critically on how leaders and managers conceive of and 
implement big data capabilities today. 

The purpose of this text is to help leaders and managers in the U.S. Special 
Operations Forces (SOF) enterprise become comfortable and conversant with 
the vocabulary and concepts associated with big data. It is not designed to 
make the reader a data scientist. Rather, it will enable the reader to make 
better use of, provide the appropriate support and environments for, and 
more richly receive the advice of personnel who are trained in data science. 
Think of this text as useful for digital immigrants—people born well before 
the year 2000 who are proficient with a range of software applications and 
technologies though not programmers—and even digital tourists—people 
who can use computers, software, and email yet struggle to master the word 
processing, spreadsheet, and presentation tools available to them. To frame 
the conversation in the pages that follow, a few important points should be 
emphasized from the start. 

Distinguishing Between the Enterprise and the Mission

The first major point is that there seems to be some confusion about how 
big data capabilities fit with the SOF enterprise. Some confuse supporting 
the mission through big data analytics with serving the enterprise’s data 
and information needs. Oftentimes this confusion is the result of apply-
ing current data storage and networking concepts to a scaled, operation-
ally integrated data flow consistent with modern concepts of the find, fix, 
finish, exploit, analyze, disseminate (F3EAD) process. Certainly there are a 
growing number of terabyte and petabyte data feeds along with analytical 
requirements flowing from them, and while they can be decisive from an 
operational and largely tactical counterterrorism and counter threat network 
perspective, they represent only a subset of the concerns with which SOF 
enterprise leaders and managers must contend. Figure 1 illustrates how the 
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current mission-oriented aspects of big data relate to the other perhaps more 
mundane but more critical elements.

While the preponderance of the Force’s experience will likely be in the 
lower left quadrant with a mixture of practical and operational applications, 
the coming technological revolution will require the enterprise’s leaders and 
managers to focus their attention on the bureaucratic half of figure 1. The 
operational half of figure 1 first requires the right systems architecture, data 

Bureaucratic

Operational

Practical Theoretical

Policy

Crowd Flow

Social Media Analysis

Swarming  Technology

Predictive Equipment

Maintenance

Force Readiness

Philosophy 
of Science

Suicide Prevention

Facial Recognition

Pattern Analysis

Encryption Issues/Security

Enterprise Cloud

Quantum Computing

Modeling

CTN Strategy 
Gaming

Simulation

Blockchain

TheoreticalDeep LearningMachine LearningArtificial IntelligenceLegend:

Figure 1. Dimensions of big data applications across the SOF enterprise. 
Source: Dr. David C. Ellis
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capture process, and personnel talent management and discovery structures 
to make big data solutions viable on the operational side. Clearly delineating 
between the enterprise’s big data requirements and the mission’s analytical 
solutions is the first point the reader must recognize.

The Boundaries of Predictive Analytics

The second main point to emphasize is that there is a substantial disconnect 
between the popular imagination of predictive analytics and what cutting-
edge science and technology can actually deliver. The magic of F3EAD, social 
media trend analysis, the potential power of metadata analysis, and other 
powerful computer assisted analytic tools, such as much discussed Project 
Maven of the Department of Defense (DOD), seem to suggest that the mili-
tary is on the cusp of an extraordinary era where an enemy’s behavior can 
be predicted with a high degree of probability. Perhaps this is true, but it is 
more likely not. For a host of reasons that will be discussed throughout this 
text, leaders should warily engage technology industry executives and ven-
dors who promise to transform data into prediction. This is not to say that 
insight cannot be gleaned from trend analysis; rather, it is simply to warn 
that the human behaviors underlying the predictive analytics most everyone 
experiences—through Google, Amazon, and other providers—are very dif-
ferent than the human behaviors with which SOF contend.

Asking the Right Questions

Big data solutions for certain SOF challenges are feasible in the near term 
if leaders and managers ask the right questions and focus on reforming the 
enterprise’s data capture processes. Most of the immediately actionable big 
data opportunities currently lie on the bureaucratic-practical quadrant of 
figure 1 due to reasonably effective data reporting structures already in place. 
Tweaks to the system need to be made to optimize the opportunities, but 
much can be learned about what it takes for the enterprise to generate big 
data policy and processes while still gaining much needed efficiency through 
high-powered analytics.

Though most of the emphasis to date has been on the operational-practi-
cal quadrant, asking the right questions on the bureaucratic side will actu-
ally set the conditions for holistic enterprise solutions. Otherwise, history 
illustrates that leaders and managers are prone to apply “Band-Aid” solutions 
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to seemingly urgent—but temporary—challenges resulting in costly, poorly 
used interfaces. Competing for advantage in the era of strategic competition 
demands a comprehensive, enterprise solution to data management, analysis, 
and exploitation. More explicitly, the questions that the SOF enterprise’s 
leaders and managers need to ask are not about tools and dashboards for 
tactical and operational missions but about how to cultivate a data culture 
orientation across diverse units and with unique reporting cultures and 
needs. This text provides the vocabulary and conceptual foundation for the 
current and future leaders of SOF to ask the right questions.

Key Insights

A few key takeaways course throughout the text and deserve highlighting. 
While the chapters are written by a diverse group of military and civilian 
academics, the following themes consistently appear.

It’s the Question, Not the Interface
Data science and making the most of big data are first and foremost about 
assembling diverse teams whose capabilities and skills combine to address 
a specific question. No matter how elegant the technology or powerful the 
supercomputer, poorly constructed questions and teams will render them 
inert. Many in the SOF enterprise expect that artificial intelligence (AI)/
machine learning (ML) can provide the easy button solution for analytics 
and decision-making or can cull the Internet to tell them what they need to 
know. This is exactly backward. There is no dashboard or data feed that can 
remain useful for long without teams of personnel capable of adapting big 
data analytics for ever-changing and emergent needs. Contrary to the belief 
that AI/ML reduces the burden on limited personnel, data science is often 
labor intensive because questions change but interfaces cannot.

The Data Management Culture
As a result, big data is really a covering term for a data management culture. 
Companies like Google, Amazon, and Apple can exploit their data in seem-
ingly effortless, predictive ways precisely because they place data at the center 
of their operations and build their business processes around self-profiling 
human behaviors. Their organizational cultures consequently allow data 
to flow with evolving customer preferences and patterns and attract engi-
neers and designers with a talent for exploiting them. In contrast, the SOF 
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enterprise sits atop a legacy IT infrastructure that is spread across multiple 
components and further subdivided by directorates headed by executives 
of roughly equal rank. Data, information, and IT are packaged as a coequal 
directorate function, not at the center of operations. Nor are the personnel 
broadly trained or educated in data management or IT. To make the most of 
the petabytes of data the SOF enterprise will accrue over the coming years, 
it must transform to adopt a data management culture. If it is successful in 
developing the culture, then the big data infrastructure that the enterprise 
needs has a better chance of emerging.

Creativity in Personnel and Talent Management
Of course, Silicon Valley can attract the talented engineers and designers 
because the tech industry can pay the limited supply of data scientists the 
salaries they command given the demand for their specialty. The SOF enter-
prise is severely constrained in this respect and the working conditions tend 
to discourage data scientists from seeking employment in the government. It 
will take a mix of active duty, contractor, and government civilian personnel 
to fill the billets, but there will need to be flexibility in how they flow in and 
out of government service given the stereotypical data scientist personality. 
Fortunately, there are non-financial ways to attract and motivate data sci-
entists to the SOF enterprise, but they have to be at the center of the system, 
not ad hoc solutions.

Developing a data management culture therefore requires a multifaceted 
and creative approach to talent management and cultivation. Moreover, 
it will require leaders and managers to move beyond the hierarchical and 
directorate-based units currently in place. A question-based, data manage-
ment culture compels the enterprise to move toward multi-directorate, cross-
functional teams, divorcing rank from perceived knowledge and wisdom 
and, on occasion, providing advice directly to leaders outside the normal 
chain of command. Nothing about this will be comfortable, but incorporat-
ing big data into the SOF enterprise will likely proceed slowly otherwise.

Resilience for Disruptive Technology
As amazing as technology now appears, the SOF enterprise could in a decade 
be faced with truly disruptive advances in computing technology. Irrespec-
tive of what leaders and managers put in place over the next five years, they 
need to be sensitive and open to radical transformation shortly thereafter. 
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Balancing the needs for near- to medium-term improvement while keeping 
an eye to long-term developments will require constantly updated apprecia-
tions of the technology context. However, with a data management culture 
in place, there is a greater chance that the SOF enterprise will manage the 
risk well and avoid becoming overleveraged in legacy technology or boutique 
solutions.

Organization of the Volume

The chapters that follow are designed to build upon one another. They repre-
sent the key insights that emerged from a Joint Special Operations University 
symposium entitled “Thinking about Big Data for the SOF Enterprise,” held 
in February 2018 and validated through interactions with related military, 
academic, and industry partners. The text proceeds in three parts to give 
the reader logical stopping points depending on interest. Part I provides an 
overview of vocabulary, philosophy, and scientific principles at the heart 
of big data. The reader will conclude this section with the basics neces-
sary to interpret a conversation about big data and AI/ML options. Part 
II dives directly into the leadership and management concerns associated 
with developing a data management culture. This section is essential read-
ing for digital immigrants and digital tourists put in a leadership role with 
data management or analytics as part of the portfolio. Part III explores the 
advanced concepts associated with big data and is designed to help leaders 
think about future ethical concerns with AI/ML and interpret the technol-
ogy and cost implications associated with a big data-centric force structure. 

Part I: The Foundations of Big Data Analysis
Chapter 1 provides the reader with the basic vocabulary associated with big 
data. It covers the differences between automation, AI, ML, natural language 
processing, and deep learning. It also discusses the basic principles of sta-
tistics upon which big data relies. In particular, the chapter distinguishes 
between closed and open systems to explain why big data is effective in the 
former but less so in the latter. Chapter 1 concludes by providing the reader 
with a solid foundation on the limits of predictive analytics, a review of the 
standard tools SOF are likely to employ, and therefore, more reasonable 
expectations about big data solutions.

Chapter 2 takes the next step by explaining the basics of statistical model-
ing. Big data is driven by algorithms, and there are inherent limitations with 
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algorithmic analysis, especially in open systems. The chapter begins with a 
description of how models are derived and how AI/ML adapts models as new 
data is obtained. It then lists a number of ways bias can impact computer 
models so that leaders and managers can critically evaluate big data solu-
tions and analyses. Chapter 2 ends with a conversation on why the emphasis 
should be on the question instead of the dashboard (given what was revealed 
by the discussions on modeling and bias).

Chapter 3 makes the point that big data is not so much about the computer 
or the technology but how teams of personnel make use of them. Despite 
the general sense that big data solutions can replace human labor, there is 
a labor-intensive component to big data analytics. Chapter 3 expresses the 
reasons why leaders and managers need to focus on personnel and a data 
management culture instead of technology solutions. It covers how to think 
about team composition and offers ideas about how to accrue necessary 
talent and systems over time. Getting the personnel aspect of big data right 
is essential because having correct vocabulary and knowledge of modeling 
cannot compensate for poorly designed questions and teams.

Part II: Management Issues with a Big Data Capability
Chapter 4 transitions the text to content directed at the SOF enterprise’s 
leaders and managers responsible for either implementing big data solutions 
or overseeing analysts who utilize them. It begins with three values and four 
attitudes that should guide the development of a SOF enterprise big data 
capability. It then critically discusses the main deficiencies and cultural dis-
connects between what a big data capability requires and how the military 
behaves. Chapter 4 concludes with different models that different elements 
of the DOD have adopted in their attempt to develop big data capabilities. 
This provides leaders with options for cultivating a data management culture 
across the SOF enterprise. 

Chapter 5 next surveys ideas for cultivating and attracting the talent nec-
essary for the SOF enterprise’s big data needs. It covers the options and chal-
lenges for generating data scientists through the military, through recruiting 
civilian talent from the private sector, and through the contracting industry. 
There are benefits and risks to each approach, but the chapter identifies some 
creative options that have been tried in the U.S. Government to attract and 
retain much needed talent.
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While hinted at in chapter 1, chapter 6 directly explores the differences 
between Silicon Valley organizational culture and the military’s. Silicon 
Valley is often associated as a model for SOF, but in reality, they work in truly 
divergent social realities. Chapters 1 through 5 provide the launch point for 
a deeper discussion about the mismatch. In particular, chapter 6 explores 
why modeling and predictive analytics seem to work so well for Silicon 
Valley but then illustrates why the operating environment of SOF violates 
the assumptions that make Silicon Valley’s algorithms so effective. In the 
end, Silicon Valley’s challenges relate more readily to patterned, replicated 
behavior, whereas the challenges of SOF are rooted in open systems where 
new, adaptive behavior is the norm thereby undermining the effectiveness 
of algorithmic modeling.

Together, parts I and II provide the foundational knowledge that leaders 
and managers should know as they engage in conversations about big data. 
However, readers have the option of moving to part III, which contains 
important conceptual content for evaluating big data solutions and challeng-
ing tech executives and vendors in their presentation of AI/ML solutions. 

Part III: Advanced Concepts with Big Data in the Social Sciences
Chapter 7 turns to ethical concerns that have arisen in the era of big data. 
Human beings can accomplish unprecedented feats thanks to big data, but 
there are growing ethical concerns—both domestically and internation-
ally—about which leaders and managers in the SOF enterprise should be 
aware. This chapter provides an overview of those concerns.

Chapter 8, the final chapter in the volume, takes a future-oriented look at 
disruptive technologies that could impact the SOF enterprise in a relatively 
short period of time. While many in the enterprise envision a hyper-enabled 
operator powered by AI and other emergent technologies, there are signifi-
cant challenges to making the concept practical. The chapter first discusses 
the basics of current technologies, including cloud computing, bandwidth 
issues both within the U.S. and abroad, and blockchain encryption. Chapter 
8 then explains the foundations of quantum computing and what it could 
mean for encryption and bandwidth issues down the line. It concludes with 
ways to think about building a big data capability for the SOF enterprise 
while avoiding investments in big data infrastructure that could become 
obsolete in the event that quantum computing becomes a viable technology. 
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Big data is a vast field with a wide range of issues to discuss. This volume 
certainly cannot touch upon all of them but endeavors to provide the reader 
with sufficient background to ask good questions when confronted with big 
data opportunities and challenges. If the design works, the reader will take 
a qualitative leap forward in adopting the concepts and traits that will make 
the SOF enterprise effective in the transition to AI/ML-based technology 
and techniques.



Part I: The Foundations of Big Data 
Analysis
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Chapter 1. The Basics of Big Data 
Terminology

Dr. Karl Aspelund, Mr. Pedro Cesar Lopes Gerum, Ms. 
Nishka Uberoi, Dr. Paul Lieber 

Big data is a vague umbrella term referring to the immense amounts 
of digital data that are being produced in a wide variety of fields in 

the present day. Data of this kind can, for example, be retrieved from a 
number of digital content social activities ranging from social media, such as 
instant messaging and posted images, to participation in genomics projects, 
to entries in search engines. Alternatively, one might find massive amounts 
of data in intelligence gathering activities, political demographic analysis, 
weather monitoring, or medical research. The term itself is now (in 2020) 
spoken of as the new normal, and the hype around it may have passed its 
peak.1 

Whether in the private sector or military context, the common feature of 
big data is the emergence of large-scale, continuously expanding databases 
allowing computer-assisted analytics to generate insight into a variety of 
areas in the social and physical sciences that would otherwise be hidden by 
the sheer volume of data. Corporate big data practices are above all aimed at 
generating profit by selling or employing data analytics to provide custom-
ized user experiences. Military, security, and intelligence agencies, on the 
other hand, collect big data in various contexts for a variety of applications. 
For example, drones collect vast amounts of video for U.S. military and 
counterterrorism operations. Similarly, the public health and science com-
munities gather vast amounts of data to study epidemics, climate change, and 
other natural phenomena.2 Of course, for different reasons, both the public 
and private sectors have interests in big data’s ability to capture Internet 
users’ physical conditions, the frequency and qualities of their social con-
tacts, their search preferences and patterns, and their geographic mobility.3

Big data differs from conventional, large-scale datasets by virtue of what 
is known as the Three V’s: volume, velocity, and variety.4 These three ele-
ments, described below, constitute the baseline characteristics of big data.



14

JSOU Report 21-9

1.	 Volume. Big data means working with extremely large amounts (tera-
bytes, petabytes) of unstructured, low-density information such as 
message feeds, click-data from webpages or apps, or livestreams from 
monitoring equipment. Very often, people misperceive large Microsoft 
Excel spreadsheets, PDFs, or presentation slide decks as constituting 
big data, but this is in error. In general, if a standard software program 
can effectively manage data, then one is not dealing with big data. 
Think of it this way: a common metric for big data is one petabyte, 
which is 100,000,000 times larger than the 10 megabyte file rejected 
by many email programs. 

2.	 Velocity. The rate at which large amounts of data arrive and the time 
sensitivity with which data can or must be acted upon are also factors 
to consider with big data. How will the data be received, stored, and 
retrieved? How rapid must the response to incoming data be? Must 
user experience algorithms respond in the moment? While not all big 
data requirements need to be acted upon in real time, there are appli-
cations across the SOF enterprise that would certainly benefit from 
this capability as part of the enterprise infrastructure, especially as it 
confronts global threat networks and near peer competitors.

3.	 Variety. Data now arrives in a multitude of types and formats as 
compared to the number and text-based, structured, often statistical 
datasets typically encountered before the onset of big data. Nowadays, 
systems and analysts must contend with streams of social media data 
(audio, video, and written messages), and sensor-based data requires 
pretreating and analysis to be placed in context and to be positioned 
correctly into the larger analytical framework. For digital immigrants 
and tourists, it is often difficult to accurately conceptualize the chal-
lenges associated with such massive, unstructured data when their 
mental models are anchored to mostly structured, spreadsheet-oriented 
versions of data.

An additional two V’s can be added to the list: value and veracity. Data 
has value, but it is often not obvious and must be discovered before the data 
is seen to be of any use. Much of the attractiveness of artificial intelligence 
(AI)/ machine learning (ML) is that computers can process massive volumes 
of data to discern correlations and patterns that would be nearly impossible 



15

Ellis/Grzegorzewski eds.: Big Data for Generals 

to discover through human labor alone. Big data is popular as a concept 
precisely because it can find value in data that is obscured by the Three V’s. 
Also, it is not always clear how truthful or reliable the data might be, so 
the veracity of data must also be assessed. Processes, therefore, need to be 
in place to evaluate the data in order to decide whether it is of value and to 
determine its veracity.5

Terms of Reference

Much of the confusion with big data stems from the way the terms associ-
ated with it tend to be used almost interchangeably. Fortunately, there is a 
hierarchy to the terms that can distinguish one from another if memorized 
in order. They are, in order of increasing technical difficulty: automation, AI, 
ML, natural language processing (NLP), and deep learning (DL).

Automation
An important aspect of processing big data is the need to move away from 
using human labor to perform tasks dedicated to the routine capturing, 
categorizing, and storage of huge amounts of historical data (snapshots of 
an enterprise over time) into so-called warehouse databases. Automation 
occurs when computers accomplish these predictable, consistent, and highly 
repeatable tasks, thereby freeing up limited human resources to focus on 
more valuable tasks. The rapid processing of data via automation helps ensure 
that it does not languish unused but is rather delivered to the right place at 
the right time where it can be viewed, considered, and acted upon.

Big data automation should therefore touch on each of the five major steps 
in a data warehouse process: 

1.	 Extracting data from applications into temporary data structures

2.	 Improving the quality of the data by making corrections, fixing errors, 
and removing irregularities (e.g., cleansing/scrubbing data) and trans-
forming it into a required uniform/normalized format (e.g., all birth-
gender information transformed into either M, F, etc.)

3.	 Loading the transformed data into the warehouse

4.	 Distributing the data into subsets (data-marts) devoted to the precise 
needs of specific teams
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5.	 Translating the data into valuable information and distributing it to 
the right places at the right times6 

Artificial Intelligence
Whereas automation is essentially about translation and sorting, AI is 
designed to approximate human decision-making. AI is a general term that 
implies the use of a computer to model and/or replicate intelligent behavior. 
The academic discipline was established in the 1950s, and the term artificial 
intelligence was first used in 1956 by Professor John McCarthy of the Massa-
chusetts Institute of Technology for a conference defining the major goals of 
AI. The basic properties of AI are reasoning, learning, and problem solving. 

In the present day, AI systems capable of human levels of decision-making 
(called expert systems) are found in a variety of sectors: finance, healthcare, 
heavy industries, aviation, communications, military, and more. Research 
has broadened into several sub-disciplines such as robotics, NLP, computer 
vision, computational biology, and e-commerce.7 The research field of AI is 
generally and currently considered to be “a variety of research areas con-
cerned with extending the ability of the computer to do tasks that resemble 
those performed by human beings.”8 

Machine Learning
ML takes an evolutionary step in computer-based decision-making. ML is 
the process of teaching a computer through repeated experience to analyti-
cally carry out a task rather than programming the computer to carry that 
task out step-by-step as with AI. ML utilizes mathematical and computa-
tional science approaches in the coding, which are typically split into (a) 
supervised learning, where the computer learns by being provided with 
labeled, training data which it eventually begins to recognize and (b) unsu-
pervised learning, where the computer groups similar data and experiences 
in iterative experiments in order to pinpoint anomalies or discover patterns 
or correlations that result in failure. Much like humans, especially children, 
ML systems have the ability to learn what not to do through trial and error, 
which gives them a better chance of returning productive outputs once they 
recognize the decisions correlated with failed outputs.

Since 1983, ML has been applied to problems in agriculture, chemistry, 
computer programming, education, expert systems, game playing, image 
recognition, mathematics, medical diagnosis, music, NLP, physics, problem 
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solving, robots, and speech recognition.9 Since roughly 2000, there has been 
an increase in the number of successful applications, ranging from Internet 
searches to autonomous vehicles and from medical imaging and diagnosis to 
speech recognition. The growing range of ML applications has been driven by 
the increased availability of inexpensive computers, an increase in comput-
ing power, the development of improved ML algorithms, greater interest in 
the area from both the research community and the commercial sector, and 
most notably by the deluge of big data pouring in from an increasing number 
of sources.10 ML systems usually work in the background of big data infra-
structure and are used to analyze information to help understand patterns 
and plan responses and actions. For 
example, a program might determine 
whether a person in one photograph is 
the same as a person in another. Or it 
might, through NLP, identify a spam 
email by analyzing and categorizing 
the message’s content.

Natural Language Processing
NLP is the study of mathematical and computational models of the structure 
and function of language, its use, and its acquisition. It also deals with the 
design, development, and implementation of a wide range of systems such 
as speech recognition, language understanding, and language generation. 
On the theoretical side, the study involves mathematical and computational 
modeling of syntax, semantics, pragmatics, and discourse aspects of lan-
guage. These may involve certain aspects of the relationship of the speaker 
and the hearer, or in the case of a NLP system, the user and the system. 
Investigations such as these are interdisciplinary and involve concepts in 
computer science including AI, linguistics, logic, and psychology.11 

NLP is a subcategory of ML that centers on allowing computers to process 
languages at a human level of cognition—to develop an intuitive understand-
ing of language. Today, NLP is used in text and social media analytics tools 
to analyze issues and opinions. A popular use case for NLP is analyzing posts 
or reviewing sites for feedback on products. 

Although analyzing text for marketing is extremely important, another 
use of NLP is to enable systems to interface with humans by generating 
original conversational text or analyzing text written by people. This is found 

ML systems usually work in 
the background of big data 
infrastructure and are used to 
analyze information to help 
understand patterns and plan 
responses and actions.
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in interactive applications such as chatbots or other customer experience 
applications using sentiment analysis such as routing a customer to a certain 
agent based on status, what was said, and even how it was said (recognizing 
mood).

NLP is also necessary for search-driven analytics where users employ a 
natural language experience to search and analyze their data to find insights, 
such as search engine autofill functions. Some of these search engines learn 
about users from their analytics history and then provide them with search 
suggestions based on what might be most relevant to them. NLP, together 
with ML, is also used in other applications such as text summarizing and 
classification.12 Additionally, NLP has its own subfield called natural lan-
guage understanding (NLU). NLU goes beyond analyzing and replicating 
the structure of language to interpret intent and resolve context and word 
ambiguity so the intended meaning of spoken or written language may be 
understood with all the subtleties, context, and inferences that humans can 
instinctively grasp through years of habituation.

Deep Learning
All ML is focused on specific features of the data (e.g., source Internet pro-
tocol address or interarrival rate). Given enough prior data, a system will 
classify, predict, or cluster new observations, but ML can be divided into two 
schools of thought. One school does not attempt to model the physiology 
of the human brain or neural networks but rather focuses on mathematical 
algorithms. In the other, DL, systems are modeled on the physiology of the 
brain, specifically mimicking the roles of neurons and synapses. 

The DL artificial neural networks, algorithms inspired by the connectivity 
of the human brain, learn from large amounts of data just as humans learn 
from experience, creating larger knowledge from smaller bits of information. 
A DL algorithm performs a task repeatedly, each time reflexively tweaking 
the formula a little to improve the outcome. Artificial neural networks thus 
break down complex problems into a multitude of tiny problems. Finding a 
face in a photograph is, for example, commonly broken down into deciding 
whether an eye, nose, or ear is present in the image and whether they are 
correctly located relative to each other. The connection between neurons is 
such that the output of the first neuron (e.g., there is an eye in the frame) is 
fed into the input of the next connected neuron by a multiplicative param-
eter that determines the weight of the connection. These parameters—or 
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weights—are adjusted through algorithms to enable the system to learn to 
match the input pattern to the desired output classification or prediction.13 

This allows computers to solve a number of complex problems without 
human intervention. DL has enabled the writing of programs to allow text 
summarization, language translation, facial recognition, and vision for driv-
erless vehicles and drones. In addition, virtual assistants like Alexa, Siri, and 
Cortana all use DL to understand speech and language in order to interact 
with humans. Recently, computers have mastered complex games like chess 
and Go through DL, outperforming the most talented humans.14

Correlation versus Causation and the Limits of Predictive 
Analytics

Advocates of big data reason that gathering, combining, and/or analyzing 
more information will lead to a superior operating picture and better deci-
sion-making. In this view, big data datasets can be crunched through ML/
DL “gonculators” to produce results so informative that the end user can 
predict future events or phenomena. For SOF, the idea is that big data might 
yield increased strategic awareness, better long-term planning capability, 
and greater situational awareness when a long-term presence is required.

Figure 2. Convolutional neural network performing the task of object detection 
and instant segmentation. Source: Olga Salt/Shutterstock
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Assessing relationships among compiled data to predict future outcomes 
is referred to as predictive analytics. Predictive analytics operates under the 
assumption that if a dataset is truly indicative of a population and/or prob-
lem, identifying statistical relationships within the collected data can speak 
to what future events will hold. Being statistically bound, it can also—with 
a mathematically based level of confidence—place a numeric weight on the 
likelihood of these events occurring. Numerical weighting joined with a con-
fidence level create the impression that the present is knowable and therefore 
sets in motion the expectation that the future can also be forecast. To the 
extent that sociocultural patterns repeat day after day, year after year, there 
is merit to this perspective. Unfortunately, the patterns of human interaction 
change—sometimes very slowly but other times very rapidly—especially in 
the age of the Internet, social media, and instant communication. While 
AI/ML/DL interfaces appear to be predictive to the average user such as the 
ubiquitous “You Might Also Like…” algorithms on shopping websites, two 
different dynamics interfere with this expectation for SOF. The first dynamic 
is between closed systems and open systems. The second dynamic is the dif-
ference between causation and correlation.

Closed versus Open Systems
ML algorithms can be implemented in either closed or open systems. Closed 
systems are systems that assume complete information and no gray areas. 
They assume that unavailable information is of no importance to the pre-
diction. In other words, in closed systems, all the variables impacting an 
interaction can be known, controlled, and evaluated for effect, and all other 
external factors are prevented from impacting the interaction.15 Common 
closed systems include cars and chemical production facilities—both have 
myriad pipes, tubes, temperature controls, sensors, and finely tuned instru-
ments that have to work in perfect synchronization to produce the desire 
output. Closed systems are ideally suited to the scientific method—and 
therefore AI/ML/DL statistical modeling—because all the variables can be 
known and controlled. 

Open systems, on the other hand, allow outside variables or additional 
information to change the direction of the current interaction. In fact, it 
is impossible to know all the potential interactions in the system precisely 
because the object of study cannot be isolated from the environment around 
it. As a result, there are some known variables impacting the outcome but 
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uncountable other variables about which nothing is known—and conse-
quently cannot even be factored into the algorithm.16 Noteworthy open sys-
tems include financial markets, highway systems, and climate systems. Open 
systems are highly problematic for the scientific method (and AI/ML/DL sta-
tistical modeling by association) because environmental factors change the 
starting condition of each case, unknown variables impact the outcome, and 
known variables often have the capacity to change themselves by choice.17 
In short, the statistical error increases significantly in open systems because 
there are never two exactly alike experiments; all interactions are unique 
in some way. In each of the examples provided, AI/ML/DL capabilities can 
be applied, but they cannot predict outcomes. Instead, they can provide the 
probability that a sociocultural pattern will basically repeat given how the 
chosen variables interacted in the past, but this is different than prediction 
in closed systems. So what exactly is the difference between causation and 
correlation? 

Causation
In closed systems, it is possible to talk about prediction because the variables 
can be controlled well enough to test the interactions hundreds or thousands 
of times to generate a statistically significant cause and effect relationship. 
Moreover, the tests can be reset anywhere on the globe and the same results 
will occur as long as the environmental conditions can be controlled. Predic-
tive analysis in closed systems is possible, but even then, laboratory experi-
ments must be undertaken to determine if the prediction actually holds true.

The allure of predictive analytics with big data occurs because there are 
closed system applications to big data. For instance, companies are using 
their data analytical insights to find correlations by focusing on stable pat-
terns and filtering noise that falls outside of the model. Thus, the closed 
system reduces variability in the model, but in return, the model makes 
stronger, more consistent predictions about future performance. 

Correlation
In open systems, however, it is not meaningful to talk about prediction 
because the introduction of unknown variables and an uncontrollable envi-
ronment prevents cause and effect from ever truly being certain. Still, a subtle 
but very important distinction must be made when referencing statistical 
outcomes from predictive analytics. Specifically, predictive analytics can 
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explore correlation between different items—meaning, how much a piece of 
data or a series of data is statistically related, or correlated, to another. Using 
statistical analysis software (IBM’s SPSS and SAS are the two most common 
packages) and in a predictive analytics approach, a dataset will be examined 
for relationships across items. 

How does the process work? A user loads a dataset into statistical analysis 
software within which an array of different statistical techniques is at his or 
her disposal. Common analysis techniques include determining correlations, 
regression to determine impact or weight of the correlations (how different 
items predict into a specific outcome), analysis of variance or ANOVA (how 
different items predict into specific group memberships), and structural 
equation modeling or SEM (how different items relate to each other in a 
statistical sequence, usually analyzed in a program called AMOS). 

When a correlation analysis is run, a software package will objectively 
review a dataset for when score patterns on a particular item or items tend 
to correspond, or correlate, with score patterns on another (or others). As 
an example, say a statistical assessment of a particular province notes that 
increases in documented adversary numbers is correlated with greater allied 
intelligence, surveillance, and reconnaissance (ISR) presence but also lower 
skirmishes. Combined, the analyst might reason the correlations to mean 
that even in this active war zone—to which enemy fighters may flock—ISR 
is serving as a sufficient deterrent to the adversary pursuing direct contact 
with allied forces. 

For a correlation to be conducted and have meaningful results, all data 
must be coded the same way and have similar meaning. There are two main 
variable types in statistical analysis. The first is called a continuous variable, 

meaning the data ranges from zero to an infinite 
number of instances. The second is called a cat-
egorical variable, meaning the data is sorted in 
a range (e.g., 1-10 instances = 1, 10-20 instances 
= 2, etc.). For instance, while Fahrenheit and 
Celsius are both continuous variables, compar-
ing their results does not account for differences 
in measurement criteria. This would render the 

comparison and results useless. The value of AI/ML/DL in this example 
is that the computer could automatically clean up the data for statistical 

For a correlation to be 
conducted and have 
meaningful results, all 
data must be coded 
the same way and 
have similar meaning.
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evaluation, or as with the case of NLP, put voice, video, or text data into a 
form that could be analyzed.

Furthermore, discovering relevant correlations depends on the data that 
is deemed useful for inputting into the system. Continuing on the example 
above, suppose sudden changes in temperature (listed by degrees Fahren-
heit) also significantly correlate to all of the items above. That is, suppose 
changes in temperature are statistically and significantly correlated with 
enemy presence, allied ISR, and skirmishes. One might conclude—and as 
data from Afghanistan shows—seasonal differences can be a relevant predic-
tor of enemy activity. This finding directly supports a notion of a “fighting 
season.” And, most importantly, this finding advises military strategists 
on ideal future application of ISR assets and ally presence during specific 
seasons. 

While predictive analytics may produce meaningful outcomes, one 
should never presume that any correlation—even on an incredibly large 
mound of big data information—infers causation. Even with the maximum 
amount of statistical confidence where relationships are found to correlate 
with each other at an almost 1:1 clip (1.000), in an open social system, one 
variable never causes another to happen. The variables are simply the things 
analysts know about, can reasonably measure, and hope contribute to the 
context in which human decisions are made. The stronger and more persis-
tent the statistical correlations are, the more the analyst can gain confidence 
in the model.18 However, as mentioned before, all that statistical correlations 
accomplish are modeling past behavior and decision structures. New inter-
ests, structures, opportunities, and obstacles can arise that alter the decision 
calculus, making the analyst’s model obsolete.

Therefore, big data and predictive analytics should always be deemed a 
tool and not an answer to strategic questions. Why? Using a classic analogy, 
if enough spaghetti is thrown against the wall, something is bound to stick. 
The same can be said for predictive analytics. If one combines enough data, 
something is bound to correlate with other items. While there might very 
well be contextual reasons to explain the statistical associations, it is just as 
likely that the correlations are spurious, or false positives. Undertaking a 
predictive analysis without sound theories of association and clear research 
questions in mind is fraught with problems. The spaghetti-on-the-wall ver-
sion of big data analysis—throwing everything into a dataset to see what fits 
and where—essentially means expending precious labor hours that SOF do 
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not have in sufficient supply to backwards justify potentially spurious cor-
relations. Starting with the why—an informed theory or hypothesis—and 
then aggregating appropriate datasets to fit an informed model is generally 
the better approach. 

Without a research question as a roadmap, statistically significant results 
derived from statistical software create a slippery slope. The danger is that the 
results might seem objectively important since they are relatively free from 
analytical bias, and they can be seductive to both planners and leadership 
looking for a strategic advantage (contextual frame notwithstanding). The 
results are not useless, per se, but should be further explored via additional 
data collection (surveys, focus groups, etc.) to determine their utility, if any. 
If the correlations are determined to have merit, the new models can then 
marry all of the research questions for re-examination.

The Limits of Predictive Analytics
Predictive analysis is not a magical approach where computers make deci-
sions in place of humans. Rather, “predictive data analytics is the art of 
building and using models that make predictions based on patterns extracted 
from historical data.”19 AI, ML, and DL are simply tools that decision makers 
can use to more confidently base their choices on data. The benefit of ML 
approaches appears mainly in that these algorithms often see patterns in 
historical data better and faster than humans.

However, it is important to remember that the outputs are all probabilistic 
in nature and that choices and assumptions made by programmers may add 
biases into the models. Therefore, programming teams must be conscious of 
how their decisions may influence the overall outcome. For example, there is 
usually more than one model that is consistent with any training data used. 
The analyst may address this issue by including a bias function that balances 
the noise added by all the assumptions made by the analyst, guiding the 
algorithm to choose certain models over others.20

The importance of exercising caution with data findings cannot be 
stressed enough. Recommending any military action from data devoid 

of a proper framework (e.g., research 
questions or theory) could literally cost 
lives, as decisions tied solely to a statis-
tical engine could be made on spurious 
correlations. In other words, AI/ML/DL 

The importance of exercising 
caution with data findings 
cannot be stressed enough.



25

Ellis/Grzegorzewski eds.: Big Data for Generals 

systems cannot—repeat, cannot—replace the need for subject matter experts 
and seasoned analysts who know their topics. By design, statistical software 
does not reason consequence or context, and software-led decision-making 
could lead to a tail-wagging-the-dog scenario. This is why theory and meth-
odology are essential components of predictive analytics. Theory should be 
the foundation to which research questions are bound and explained. Here, 
theory refers to social or natural science phenomena previously tested and 
validated to explain similar problem sets and populations. 

Predictive analysis by design does not test theory; rather, its objective 
is statistical assessment of the variables provided to determine if patterns 
have a history of repeating or intersecting. As a result, there should always 
be a theoretical base from which the analyst draws. For example, assume a 
dataset provides information about a Syrian population vulnerable to radi-
calization. A predictive analysis of aggregate survey findings (over several 
months) from these individuals may produce statistically significant results 
in a respondent’s stated perceptions (e.g., on a scale of 1-5, ranging from dis-
agree to agree) of safety, security, access to employment, mobility, and desire 
to join a terrorist group. A psychological operations professional trained in 
this doctrine might point to Maslow’s hierarchy of needs as a way to make 
sense of the findings, as these questions all relate to Maslow’s theoretical 
continuum. With a theoretical base to draw from, this also advises the ana-
lytical professional on how to conduct future analyses, ones where the theory 
can be further applied toward a better understanding of similar concepts 
and populations. 

Similarly, methodology should never be taken for granted. A favorite 
expression of quantitatively leaning social scientists is garbage in, garbage 
out. This adage highlights that any data that is not properly structured for 
analytical purposes is apt to produce meaningless, or worse, wrong results. 
Despite the seemingly obvious nature of this statement, poorly organized 
and structured data is unfortunately a common occurrence in predictive 
analytics. Many datasets include questions containing more than one con-
cept (double-barreled) or worded in a leading fashion (toward a desired 
outcome), items possessing different scale types (e.g., 5 point versus 7 point 
versus continuous data) and/or an item that does not really encapsulate the 
problem being addressed, or reverse coding (where a ‘1’ in one question may 
mean strongly disagree and the exact opposite in another). While statistical 
analyses of such items can occur—and statistically significant correlations 
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may emerge—these should never be considered predictive or even math-
ematically sound.

While predictive analysis can be useful in a military context, it is impor-
tant to understand the strengths and limitations of this tool and when and 
where it should be applied. It should always be employed to inform versus 
advise, be grounded in some aspect of theory to enable future use, and be 
housed within a rigorously designed methodology to ensure compatibility 
with data analysis software. Finally, one should never infer causation from 
even the strongest statistically significant correlation.

The best use of predictive analytics is when a diverse, cross-functional 
team develops a model. Grouping data scientists, operators, planners, social 
scientists, and statisticians ensures assessments match the operational and 
strategic intent and that they are used appropriately to inform leadership. 
Cultural experts can explain findings also derived from statistical outli-
ers. A diverse team also maintains a proper checks-and-balances approach, 
where one individual does not over- or underestimate findings in light of 
a bias-driven concept. Lastly, theory, methodology, and most importantly, 
the purpose of the predictive analysis should be addressed before any data is 
gathered and ultimately assessed. Working backwards should be done with 
extreme caution as it risks justifying activities and actions that are more 
coincidence than circumstance.

Common Artificial Intelligence/Machine Learning  
Applications

With these basic elements of AI/ML now explained, it is possible to better 
interpret the common applications SOF are likely to employ. 

Social Media Analytics
With information being voluntarily provided by thousands of consumers, 
focus groups and polls are not needed in the same way as they used to 
be. Instead, corporations get a sense of users’ needs and opinions by using 
tools such as NLP to identify the meaning and sentiment behind tweets 
or posts. They may then, for example, analyze the resulting data to gather 
customer sentiment towards brands and products and tailor their message 
to attract new audiences. This uses advanced ML algorithms to not only 
identify hashtags but also understand the context of a user’s post. For this 
specific task, there are key performance indicators that the software will 
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look for and will prioritize posts based on relevance to the client. Relevance 
is measured by assigning probabilities and weights to the various features. 
For example, there may be two companies with very similar names. The 
software will learn to identify cases where a specific company is referenced 
over another. These indicators (in order of increasing priority) could be the 
number of views on different platforms or the number of times users interact 
on a product post. Having access to this information enables companies to 
tailor their marketing more effectively to each individual.

Biometrics
Digital security based on biometrics like fingerprints, voice, or facial rec-
ognition can be improved using AI. Traditional methods have loopholes 
that can be exploited. For example, a facial recognizer cannot distinguish 
between a live person and its image. Improvements done by implementing 
computer vision and advanced facial recognition tools have given us novel 
software and apps which can recognize faces, expressions, and facial move-
ments. This is done by looking at features such as the distance between the 
eyes and shape of the nose and lips. By learning such features over time, the 
software can successfully recognize the person. Voice recognition, however, 
is different because the features to be looked at are slightly less obvious 
and unique: voice is characterized by pitch, silence periods, cadence, and 
tone. Separately, these parameters don’t tell us much, but together they can 
successfully help differentiate between speakers. Most products that use 
biometrics are designed to recognize users under different circumstances 
(different hairstyles, applied makeup, changes due to illness, etc.). However, 
having complete facial or voice recognition software requires large databases 
which are prone to security breaches. Applying these techniques can elimi-
nate passwords for more secure verification of users. The onset of AI with its 
ability to learn over time has now made available newer biometric parameters 
called behavioral biometrics that measure, for example, keystrokes, pattern 
dynamics, and voice print.

Social Network Analysis
AI is becoming widely used in the commercial world to increase engagement 
on different social network platforms such as Facebook, LinkedIn, Twitter, 
and various dating apps. Facebook and Twitter are currently the greatest 
sources of social media analytics. Analyzing users’ internet activity makes it 
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possible to highlight content which is most interesting to them. It also helps 
write e-mails and messages faster by predicting the remainder of commonly 
used phrases. Featuring relevant posts requires ML and some data analysis 
in order to learn the users’ responses over a brief time and constantly update 
it. NLP, as previously discussed, can aid in completing user sentences while 
typing, and it understands the sentiment behind what has been typed to 
suggest replies and emojis. Social networks and dating apps can suggest 
people to be friends, follow, or date based on graphs of mutual connections 
and interests.

Personnel Management
Recruiting portals and job boards attract employers and employment seekers 
by trying their best to feature relevant companies to the candidates and best 
matches to the companies. The success rate of hiring determines the success 
of that portal. These processes are enhanced by ML, which learns from the 
company’s profile and description about the kind of candidates it is looking 
for and looks at candidates’ resumes to see what experience they bring to 
the table. When a candidate searches for a keyword, the most relevant jobs 
show up. When the company receives applications, the portal filters out the 
best matches. This uses text analysis and data mining to organize the results. 
Online interviews are now conducted at larger corporations as the first or 
second round of engagement. Candidates interact with a computer, and 
their responses are recorded and analyzed for signs of nervousness, stress, 
authenticity, preparedness, and confidence. 

Robotics
Robots have long been fashioned in popular culture as the pinnacle of inven-
tion. However, a robot, strictly speaking, is simply a machine that completes 
a task repeatedly without human intervention and without error. With AI 
that now learns from its environment, a robot can learn by doing a task in 
the manner of ML of any kind. This creates possibilities for many new ideas 
of automation in the industry. Robots can be trained to have conversations 
with humans and other robots, and they can learn how to walk and perform 
complicated tasks with programming that helps prioritize tasks when they 
are faced with decisions. 
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Behavioral Pattern Analysis
AI is used for things that humans are instinctively good at—things that 
even science has yet to understand the way they are done by humans—like 
distinguishing between objects or remembering things. One theory is that 
in order to achieve human-like intelligence in machines, they also need to be 
injected with human-like emotions.21 AI-powered models identify different 
emotions in speech, facial expressions, and even text, as well as learn how to 
respond to them. For example, if a robot is to learn how to respond to user 
emotions on its own, it will learn by observing 
behavior and deriving patterns from it. Neural 
networks—computational and mathematical 
models of the human brain—are used to “teach” 
a robot, either by explicitly providing rules and 
supervision or letting it learn from its environ-
ment unsupervised. The robot may be taught the 
various rules of emotions in the form of a graph 
and how to access the graph. But first the robot 
needs to deduce what emotion is being displayed. For that, behavioral pat-
tern analysis requires a combination of computer vision, NLP, and speech 
recognition. 

Swarming Technology
Swarm technology is the collective operation of separate, decentralized units, 
like bees or ants. This technology manifests itself in distributed computing, 
swarm robotics, and the Internet of Things. Current technologies are primi-
tive and not easily scalable, which means that they cannot be expanded easily 
and diversified to do different tasks. The flip side to this is that distributed 
computing can be used to power AI. Companies and research groups are 
harvesting idle computers all over the world to solve small parts of the bigger, 
more complicated problems of AI.

Machine Diagnostics
Manufacturing and processing industries all over the world require regular 
maintenance of their machines and components. AI-based control systems 
have now begun to predict upcoming failure of machines and alert repair 
personnel, saving money on human inspectors and avoiding human error. 
Control systems deployed for this task monitor a machine’s usage and predict 

AI-powered models 
identify different 
emotions in speech, 
facial expressions, and 
even text, as well as 
learn how to respond 
to them.
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wear and tear of parts based on their expected life span. Workers are alerted 
when a critical stage is reached. The AI that does this follows a simple rubric: 
the machine states are defined and the action of using the machine over a 
period depreciates the reward for using it. Once the reward becomes less 
than moving to the next state, the AI moves to the state with higher reward. 
This state would indicate moderate wear and tear (thus giving warning to the 
user) and over time, the reward will diminish so much so that the AI will 
move to the critical stage which will create an alert for immediate require-
ment of new components. This is known as reinforcement learning and is 
used to train the model underlying the AI to “think” and work like humans.

Conclusion

Big data is a catchall term used to describe—and unfortunately muddy—a 
number of precise technical, statistical, and social science concepts. What 
distinguish big data from very large data files are volume, velocity, vari-
ety, value, and veracity. These characteristics require an entirely different 
handling and analysis process than currently exists in the SOF enterprise. 
Many people believe that computer-driven automation, AI, ML, NLP, and 
DL capabilities will provide leaders with precision insight about complex 
phenomena to improve decision-making. That is, they believe the right data 
is available, but computers are needed to demystify what really matters so 
leaders can make the best informed decisions possible. This spaghetti-on-the-
wall image of big data analysis is in actuality the opposite of how properly 
functioning big data analytics operate and is often driven by the myth of 
predictive analytics. 

Although the name predictive analytics suggests that AI/ML systems 
can causally determine relationships between variables and foretell future 
events, the truth is that they can only correlate relationships and determine 
a probability of current patterns replicating. These are important distinc-
tions. Moreover, the challenge for SOF occurs in open systems, meaning 
the number of variables impacting the problems it faces is unknowable. It 
is impossible, therefore, to accurately model future behavior, though logical 
inferences can be made based on history. The tools and applications derived 
from AI/ML techniques can help illuminate aspects of the operating envi-
ronment that are not obvious, but they require informed design. As a result, 
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Chapter 2. The Basics of Big Data 
Modeling

Colonel Mark Zais, PhD; Dr. Karl Aspelund; Mr. Pedro Cesar 
Lopes Gerum; Ms. Nishka Uberoi

Artificial Intelligence Relies on Models although All Models 
Are Wrong, but Models Can Be Useful

At their core, artificial intelligence (AI) and machine learning (ML) 
systems are just mathematical models—really, really complex math-

ematical models that require computers and code to make the models work. 
But as mathematical models, they rely on some basic statistical concepts 
and limitations that are easier to understand. Every model corresponds to 
a specific problem and accounts for what personnel judge to be the funda-
mental variables impacting the problem. In many cases, AI/ML projects are 
comprised of numerous subordinate models that interact with each other. In 
a general sense, the two main components of such models are objective func-
tions that represent (a) needs, which signify the importance of each aspect 
of the problem to the client and (b) constraints, representing real-world 
limitations in terms of knowledge of the problem, access to data, and com-
putational capability. An AI/ML project is not the brainchild of just the data 
scientist. Rather, most projects come from a client’s problems or needs that 
the data scientist believes can be addressed using cross-functional expertise 
as interpreted through AI/ML and data analytics techniques.

The objective of chapter 2 is to explain how mathematical models are gen-
erated and the problems associated with them as they attempt to represent 
a portion of reality. The first section reviews some key modeling concepts, 
namely regression, inductive analysis, and deductive analysis. These elements 
form the skeleton of every AI/ML project. The second section introduces the 
issues associated with structured data, unstructured data, and the problem 
with garbage data. These elements constitute the meat of an AI/ML project, 
and even the best AI/ML project will fail if the data content it processes is 
poor. The third section discusses the various types of bias that inevitably 
become infused within mathematical models. Finally, the fourth section 
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describes the difference between question-driven and dashboard-driven 
AI/ML systems. Vendors often focus on the elegance of the dashboards 
they create on top of an AI/ML system, so knowing how they trained their 
products for demonstration is crucial for making informed AI/ML/natural 
language processing (NLP)/deep learning (DL) purchasing decisions.

How Artificial Intelligence Models are Designed
AI and ML projects are simplifications of the real world that consider the 
trade-offs between representing reality accurately and having a model that 
is trainable and efficient. To be clear, this trade-off means that every math-
ematical model is a purposefully scoped, incomplete, and partial represen-
tation of reality—not reality itself. The seductiveness of AI/ML solutions is 
that they generate numbers, charts, maps, and other outputs that create the 
perception of certainty, but in reality, they only present a limited frame of 
the world generated by the biases of the personnel who created them given 
the available data. For discrete, replicable tasks operating in fixed time and 
place environments, AI/ML can be very powerful. Such is the case with the 
find, fix, finish, exploit, analyze, disseminate process; surveillance functions; 
mechanical repair and maintenance data; and social media trend analy-
sis, for example. Decision-making with such outputs can most certainly be 
enhanced. However, mathematical models become less useful in more open, 
medium- to long-term challenges for which the number of relevant variables 
is simply unknowable or for which the variables themselves (people) can 
purposefully change. At the high operational to strategic levels, AI/ML solu-
tions consequently lose their efficacy and should be interpreted cautiously 
by decision makers.

A common assumption used in many models is that certain features of 
a problem are linearly dependent. That is, the models assume that there is a 
causal direction between a dependent variable (the outcome) and the inde-
pendent variables (or subordinate variables assessed to affect it) that can be 
known and measured. However, many problems have features that are cor-
related in a more complex, non-linear manner where instead the variables 
mutually affect one another in an iterative cycle over time. One example is 
the geometric relationship between the value of a vehicle and the time the 
vehicle has been owned. Although clearly correlated, the depreciation of the 
car’s value occurs at a fast rate initially but then slows down after a few years 
have passed. While it might be possible to correlate the value of a particular 
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make of car over time from aggregated data, it would be impossible to predict 
on the day it was purchased the value of a specific car in five years because 
its wear and tear, accident history, and mileage could not be foretold. In the 
end, a model’s assumptions need to be carefully assessed so that the noise 
produced—the simplification of reality—does not overly affect the quality 
of the output.

Classification and Regression. Most ML algorithms tackle one of two cat-
egories of problems: classification problems and regression problems. The 
main difference lies in the characteristics of the output sought. Classification 
models predict outputs with no well-defined order such as identifying the 
type of tumor a person might have or recognizing which state a vehicle’s 
license plate is from. Similarly, one might consider handwritten digit rec-
ognition. The AI/ML output is numbers, but it is not a regression problem. 
Rather, it is considered a classification problem as the order of the digits is of 
no importance. The AI/ML project simply tries to connect each image to a 
specific label, and the number of categories should be very small in relation 
to the size of the dataset, allowing the computer to confidently pair patterns 
with each category. Project Maven, for instance, aligns with a classification-
oriented AI/ML problem. The system seeks to establish a normal pattern of 
life in an area so that analysts need not devote their limited time to moni-
toring, well, nothing. Rather, the AI/ML is supposed to determine what an 
abnormal incident looks like given the “normal” baseline and then classify 
it as requiring further analytical attention.

Regression models, on the other hand, are designed to predict continu-
ous outputs such as the price the market is willing to pay for a house or 
the desired angle of a wheel in a self-driving car. Here, order matters. For 
example, everyone can agree that a house costing $5 million is more expen-
sive than one that costs $3 million. One number is simply larger. In the 
military context, a commander might want to know where on the map he or 
she is most likely to encounter improvised explosive devices (IEDs), hostile 
populations, or the most concealing terrain. Here, predictive analytics are 
employed using regression modeling. A typical AI/ML model digests dozens 
to hundreds of variables to determine which are most correlated with the 
commander’s problem, and an algorithm produces number values, or contin-
uous outputs, that can be compared. When paired with geospatial software, 
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it is possible for heat maps to be created based on the AI/ML model’s assess-
ment of the variables used in the model.

In general, regression problems are more efficiently solved when the data 
is robust and complete, allowing the computer to accurately assess the value 

of each data point, although the use of 
sparse or incomplete data can be used 
in sufficiently large datasets. Unfortu-
nately, good data is not always forth-
coming, which means there is a good 
chance that the models are wrong. 

Analysts and leaders need to be clear about the strengths and limitations of 
the models based on their underlying assumptions and data sources.

While most problems fall into either the classification or regression cat-
egory, some problems, such as those that have clearly ordered yet no con-
tinuous outputs, are often solved with a mix of the two types of models. 
For instance, to help a commander determine how to navigate an area, a 
predictive analytics model might provide the probability of IED strikes along 
different roads—produced as comparable continuous numbers—and identify 
a tribe with a history of positive interaction with U.S. forces—produced as 
a classification output. Both classification and regression models largely 
benefit from an increase in the size of the dataset used for training, but this 
depends on time, funding, and data that accurately reflect the environment 
against which the model is being applied. 

There are two main statistical approaches to designing AI/ML models: 
inductive and deductive analysis. While the average user or leader does not 
need to be familiar with the algorithms and coding that power the different 
models, they do need to know the philosophy of how each works to assess 
the strengths and weaknesses. The next two sections describe the philosophy 
of science underlying each approach.

Inductive Analysis. Inductive analysis begins with the presumption of igno-
rance about cause and effect in a system. Some phenomenon is observed—
riots, IED attacks, local resistance to extremism—and it is hoped that 
empirical data can objectively determine the variables contributing to its 
occurrence. The benefit of inductive analysis is that it attempts to mitigate 
analytical bias because the data determines relevant correlations, not the 
analyst. Additionally, analysts and leaders are not required to know anything 
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about the environment beforehand because they are supposed to be agnostic 
anyway. 

To give the AI/ML algorithm a predictive capability, it is first necessary 
to “train” the data. That is, the model is taught through multiple data points 
and processing iterations to recognize the variables most highly correlated 
with the output sought. In an inductive analysis, however, the trick is to 
bring as many variables into the analysis as possible and let the algorithm 
determine statistical relevance. When it comes to big data, determining 
relevant correlations and patterns is impossible for humans to comprehend. 
The computer, in the inductive step, iteratively finds patterns and matches 
them to the given examples until it is confident about patterns that most 
closely match every single data point’s output.

ML provides a simple, efficient way for algorithms to learn patterns that 
might represent correlations instead of coders writing thousands of if-then 
statements of causation. The algorithms can account for minor patterns 
that humans often overlook or are not capable of finding. Many variations 
of common algorithms, such as recurrent or convolutional neural networks, 
aim to help the computer train faster and more efficiently. As an analogy, 
the variations represent the different methods a parent might use to teach 
a child. Inductive analysis of this kind is crucial for the ML algorithms to 
provide good outputs.

Deductive Analysis. In contrast, deductive analysis begins with the analyst 
bringing ideas about cause and effect to the table and incorporating the 
assumptions into the model before statistical analysis is conducted. In this 
case, the analyst has a hypothesis that certain variables are important and 
uses the data to test whether the assumption is valid based on statistical 
testing. Deductive analysis typically derives from deep experience with a 
problem or from a series of logical inferences. Whereas inductive analysis 
casts a wide net of variables at the problem, deductive analysis most often 
utilizes a far narrower range of variables in the model since the analyst 
already has a sense of causation in mind.

Ideally, AI/ML modeling should incorporate both approaches as each 
has deficiencies. A completely inductive analysis is likely to result in spuri-
ous correlations—statistically relevant results that have no basis in fact. 
Without some familiarity with the problem, the analyst will have no way to 
judge whether the algorithm’s results make sense. The inductive approach 
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encourages analysts to investigate factors they might ordinarily overlook. On 
the other hand, a purely deductive approach could result in a model riddled 
with bias with no way to correct for variables that should be included. An 
elegant AI/ML approach would leave space for both types of analysis, but 
rarely is this the case. Dashboard-based AI/ML systems deserve special cau-
tion because they tend to be derived from the vendor’s deductive analysis 
and are trained against data that matches the assumptions. While they tend 
to look impressive in demonstrations, they become prone to missing new, 
emergent variables over time precisely because they could not have been 
known to be relevant when the model was designed. 

How Machine Learning Enables Artificial Intelligence Models 
to Adapt
How do AI/ML models adapt to reality? Part of the answer is that not all AI 
algorithms are designed to adapt, which is why it is essential to distinguish 
the ML and DL models as subsets of AI. This leads to a confusing, “All 
machine learning is artificial intelligence, but not all artificial intelligence 
is machine learning,” statement, but this is essential to recognize. The other 
part of the answer unfortunately depends on whether the problem at hand 
relates to a closed or open system. For most closed system AI/ML func-
tions, it is possible to record, measure, and code data in a structured way 
because the system can be controlled and monitored in a fairly precise way. 
Processing new data and updating the model’s algorithm can be written in 
the code in a relatively streamlined way in such cases. In open systems, this 
is harder because the data does not come neatly packaged because it cannot 
be controlled or measured. In other words, the data is unstructured and 
oftentimes cannot easily be formatted for processing. Since the structured-
unstructured aspect of big data is a crucial component, it is worth spending 
some time discussing this characteristic.

Structured Data. Structured data is data that can be represented by rows 
and columns and is usually located in relational databases. Spreadsheets 
often underlie these databases, and examples of data include numbers, dates, 
and text strings. Some applications, such as those dealing with customer 
relationship management, may allow for transformations of unstructured 
data to structured data based on keywords correlated to themes or codes. 
Structured data tends to be easily searchable by humans using simple search 
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queries or via searchable algorithms. In many cases, basic AI is sufficient 
for the analytical task at hand because the intention is to identify patterns 
or trends or to highlight points of interest. The algorithm does not need to 
adapt, just accurately complete the desired function automatically. In addi-
tion, updating structured data tends to be easy; a simple query is usually 
enough to update one or several data points.

Most early versions of prediction methods relied on structured data 
because programmers could more intuitively tell the computer how to use 
each piece of data separately and define their correlation. Some new ML 
methods still use structured data in their predictive analysis with the advan-
tage of being able to more efficiently find the correlations among several 
different features—or the different ways patterns interact—that would take 
humans a considerably longer time to clarify. A major disadvantage of algo-
rithms that use structured data is the need for pre-processing raw data that 
is usually not clearly structured. Since basic AI models are generally able to 
tackle problems involving structured data, ML approaches are most effective 
when dealing with unstructured data. 

Unstructured Data. Unstructured data is essentially every other kind of 
data that can be obtained outside of a spreadsheet format. Some examples 
include text files, emails, social media content, mobile data such as location 
or app usage, images, audio files, slideshows, scientific data from atmospheric 
sensors and space exploration, and traffic data. Although all data has an 
internal structure of some kind, unstructured data does not have an inter-
nal structure clearly defined within the models. Unstructured data tends 
to be larger and usually takes up more storage space than structured data. 
Furthermore, updating unstructured data points is usually complicated and 
often the whole file needs to be replaced. However, unstructured data sources 
are usually much easier to obtain and need less data processing work unless 
the intent is to make them structured. 

The main purpose of NLP is precisely to efficiently recognize and package 
unstructured data for further processing. NLP is dedicated to empowering 
computers to understand spoken com-
mands and the structure of language 
and accurately interpret the context of 
conversation whether in audio or text 
format. The lack of a clearly defined 

The main purpose of NLP is 
precisely to efficiently recognize 
and package unstructured data 
for further processing.
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internal structure makes it hard for traditional data mining models to define 
meaningful patterns in such data. Recently, an increasing number of studies 
have tackled the problem of dealing with unstructured data. ML methods, 
benefiting from the rapid increase in computational power, have been par-
ticularly successful at this. These methods can order unstructured data in an 
efficient way for computers to understand, even if humans sometimes find 
it difficult to understand the pseudo structure created by the algorithms.

Garbage In/Garbage Out. Even though AI/ML models have improved 
markedly in recent years, filtering the good data from the bad is still of major 
importance for the robustness of any model. AI/ML systems are entirely 
dependent on the data they are provided, so it is essential that full consider-
ation be given to the collection and processing of data on the front end, not 
just to the output on the back end. If the intention is for an AI/ML model 
to find patterns in data to predict future behavior, and if the model is given 
data that inaccurately represents reality, it will find spurious correlations 
matching the erroneous information and lead to deeply flawed analysis and 
decision points despite statistically relevant results. The common expression 
garbage in, garbage out is thus very true for ML models—the more garbage 
the model is fed, the more garbage it delivers as output.

Sure, Silicon Valley Is Impressive, but It Cannot Predict the Future
For many leaders in the Special Operations Forces (SOF) enterprise, the allure 
of big data solutions derives from the experience they have with predictive 
analytics while shopping online, engaging in social media, or while reading 
the news. Each of these experiences invariably includes a window exclaim-
ing, “You Might Also Like …” to buy, chat with, or read, respectively—and 
many times the window is right. These predictive analytics windows are 
driven by ML systems, and they are impressive. But they have a secret: they 
work because users voluntarily profile themselves using structured data so 
that the company can employ inductive analysis on recent purchasing or 
viewing patterns. That is to say, the ML works because the users are playing 
right into the hands of the system. 

Silicon Valley has become the symbol of any company that utilizes AI/ML 
techniques and big data analytics to create a seemingly personalized online 
experience for users. Silicon Valley’s most famous companies earn their 
money not by the product they offer to the user but by selling the marketing, 
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demographic, and preference indicators to which individuals voluntarily 
give them access in the (mostly unread) user agreements. These companies 
package the information in structured, geolocated, and time-stamped form 
and sell them to companies for myriad purposes. Oftentimes, the data serves 
as key variables in regression models that companies can apply against their 
product’s viewing and sales records to generate a predictive model of what 
people want to consider based on the statistics generated from the profiles 
provided by Silicon Valley. 

Think about it: what is interesting and valuable to a single twenty-year 
old with no children would undoubtedly be different from the same person 
at age thirty-three with two kids, a dog, a mortgage, and aging parents. The 
combination of search queries, social media chats, and traditional phone 
or web-based marketing surveys yields truly insightful demographic infor-
mation about target audience segmentation. When incorporated into an 
inductive regression analysis with ML algorithms that continuously update 
the model, the online user experience has the ability to appear persistently 
relevant and personalized. In truth, the model cannot predict a user’s pur-
chasing patterns perfectly, but it can make informed assumptions about the 
probability the user might be interested in something that others of the same 
profile found interesting.

The Silicon Valley system in essence creates enough of a closed system 
that it seems prescient and predictive. While not every user decision can be 
controlled, aggregate user behavior creates statistically relevant models based 
on already structured data. Compare this, however, with the environments 
in which SOF operate. These environments tend to be characterized by weak 
institutions, poor information, fractured communication systems, language 
barriers, and cultural differences. In other words, they tend to be extremely 
complex environments with mostly unstructured data. The Silicon Valley 
model of predictive analytics breaks down in such circumstances because 
data does not stream efficiently into the system, and there typically is not 
the target audience segmentation necessary to make the statistical analysis 
feasible. This is compounded by the fact that the knowledge management 
system in the SOF enterprise is built on distributed legacy systems instead 
of a corporate culture that places data at the heart of the organization as in 
Silicon Valley. While there are areas and capabilities in the SOF enterprise 
that currently match the requirements for big data analytics, the system as 
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a whole requires major restructuring before it could even approach the idea 
of predictive analytics for many of its most pressing challenges.

Bias in Models

As previously mentioned, the issue of bias is intrinsic to the process of 
developing models since each requires conscious choices to be made in the 
representation of reality based on limited time, resources, and data. Conse-
quently, algorithmic bias has developed into a significant issue in the evolu-
tion of AI/ML modeling. It is a reasonable concern that algorithms might 
conceal hidden biases that influence consequential decisions a leader might 
make. Users and stakeholders are often too willing to trust mathematical 

models because they believe that the models 
remove human bias. Regardless of how data 
is controlled and the parameters are set, every 
algorithm will have some form of bias. 

Most algorithms make predictions based 
on generalized statistics from the most readily 
available information. When thinking of the 

term bias, it is natural to think of it as something subjective. In the context 
of models, analysts learn that bias is not only something to try to avoid 
but also that it is something that can be accounted for with mathematical 
modeling and “objective” statistics. Yet model bias is a fairly broad issue that 
encompasses many sources of bias.

One of the most basic and widely used supervised ML models is the 
linear regression model previously mentioned. Given a range of indepen-
dent (or explanatory) variables, the dependent variable (or outcome) is pre-
dicted using the model. Linear regression models have an inherent flaw: they 
assume open systems can be reduced to just the independent variables in the 
model resulting in bias in the process. In fact, there are other independent 
variables not represented in the model that impact the outcome and result 
in deviance from the prediction. These deviations are called error values 
and are collectively hidden as the standard deviation from the regression 
model’s prediction line.

Very few real-world problems have a simple linear relationship, so the 
estimate from the equation above reasonably results in some bias due to the 
rigidity of the linear regression model itself. In general, the more flexible the 

Regardless of how data 
is controlled and the 
parameters are set, every 
algorithm will have some 
form of bias. 
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model becomes, the more capable it is of improving fit and reducing bias. 
The purpose of ML applications is precisely to adapt and improve the model 
as more information is ingested.

There is also a natural bias based on the fact that statistics utilizes sample 
data to make the models. Samples are small portions of an overall popula-
tion. For example, it would not be prohibitively expensive to model some-
thing with a population of just one hundred units, and a sample might not 
be necessary in this case. However, modeling the attitudes of America’s three 
hundred million person population would be prohibitively expensive, so 
taking a sample of 1,500 people is much more feasible. In making this time 
and cost trade-off, the results of the sample are very probably going be wrong 
to a certain degree, but the error is generally acceptable so long as it is not too 
large. Developers often estimate the parameters of a model using the method 
of least squares, also known as ordinary least squares. With parameter esti-
mation, the developer computes a standard error or confidence interval to 
estimate how well the model represents the overall population. Developers 
test hypotheses about these parameters by computing test statistics and their 
associated probabilities (p-values). As previous discussed, it is important to 
note that bias affects parameter estimates, but it is also important to under-
stand that bias affects standard errors, confidence intervals, test statistics, 
and p-values. These latter areas are often overlooked.

Assumptions
Bias can be introduced in multiple phases of mathematical modeling. It 
may come directly in the form of modeling assumptions or indirectly from 
sources, such as poorly constructed sampling procedures and training data-
sets. The assumptions that model developers and organizations infuse into 
the AI/ML systems are the most pernicious because they are so hard to detect 
and challenge. This is especially true when a vendor utilizes established ana-
lytical frameworks, such as DIME or PMESII,1 because they are culturally 
comfortable, not because they most accurately model the problem at hand. 
There are many types of bias that reinforce assumption errors.

Confirmation Bias. Confirmation bias is frequently discussed in the psychol-
ogy literature and relates to the tendency of people to seek out and inter-
pret evidence in ways that are supportive of existing beliefs, expectations, 
or a favored hypothesis.2 It occurs when analysis is conducted to prove a 
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predetermined assumption held by the person performing the analysis. Con-
firmation bias is an unintentional, or sometimes intentional, desire to prove 
or substantiate a hypothesis, assumption, or opinion. Cognitive science has 
proven that there is a natural tendency to search for new information in a 
way that confirms the current hypothesis and to irrationally avoid informa-
tion and interpretations that contradict established beliefs.3 

Sample Selection Bias. Sample selection bias is a type of bias caused by 
choosing non-random data for statistical analysis. This type of bias occurs 
when data is selected subjectively or when there is a flaw in the sample selec-
tion process, and it is a reason why random data samples are so important. A 
common assumption in the design of learning algorithms is that the train-
ing data consists of samples unrelated to the data being used by the model 
to make predictions. In fact, the model may get tainted by training against 
data that is not a random sample representative of the true distribution of 
the population. 

Inductive Bias. In ML, the term inductive bias refers to a set of (explicit or 
implicit) assumptions made by a learning algorithm in order to perform 
inductive analysis. Every ML algorithm with an ability to generalize and 
adapt beyond its training data has some type of inductive bias. Since a model 
is designed to highlight a portion of reality, it must be pushed in a direction 
that prioritizes its specific function at the expense of other possible obser-
vations. As a result, models can become self-referential and miss emerging 
trends because they are specifically designed to focus on certain factors over 
others. Without a bias of this kind in the model, inductive analysis would 
not be possible, and predictions for new situations could not be made.4 

Outlier Bias. Outliers are data values or observations that lie at an abnor-
mal distance from other values in a random sample from a population. 
Sometimes, outliers are classified as extreme outliers if they fall significantly 
beyond a certain point along a distribution. Outliers are often bad data 
points, but they can also contain valuable information about the process or 
system being evaluated. Before considering the possible elimination of these 
points from the data, it’s important to understand why they appeared and 
whether it is likely similar values will continue to appear.5 

Understanding outliers and distributions is critical in analyzing data. 
Outliers may negatively bias the entire result of an analysis, or the behavior 
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of outliers may be precisely what is being sought. When modelers understand 
the relationship of outliers to the distribution itself, they can determine the 
most appropriate way to deal with them. Outlier bias is particularly prevalent 
in big data because the larger the dataset becomes, the harder it is to identify 
and remove outliers. 

Overfitting and Underfitting. A model that is too simplistic a representation 
of reality will produce underfitting. As such, the model does not accurately 
detect signals from the data or learn by adapting the model to fit the new 
data—it is essentially a one-size-fits-all model. Overfitting is when a model 
is overcomplicated or too complex. A model that is overfit will memorize 
noise instead of learning the signal from the data. Overfitting is one of the 
most common biases, which can come from something as rudimentary as 
analyzing multiple hypotheses in data. For instance, if a model evaluates 
numerous hypotheses, each with a probability of being a false positive, the 
likelihood of a false positive increases significantly. 

Confounding Variables. A confounding variable is a variable that is outside 
the scope of the existing analytical model but influences both the explanatory 
and dependent variables. In ML, a confounding variable can be described as 
an important variable that is omitted but should be included in the predictive 
model. For instance, suppose U.S. Special Operations Command wants to 
develop a retention model to predict continuation rates (i.e., the estimated 
length of service) for its Service members but only uses gender, education, 
and occupation specialty as explanatory variables. It is well established that 
the branch of Service is an important variable because some branches have 
statistically different continuation rates than others. For example, the average 
length of service for members of the Air Force is greater than the average 
length of service for members of the Marine Corps. Therefore, branch of 
service is a confounding variable that should be included as an explanatory 
variable in the model.

It’s the Question That Matters, Not the Dashboard

Circling back a moment to the beginning of the chapter, it is important to 
remember that AI/ML solutions are models, and all models are wrong. More 
fully stated, every model represents a slice of reality that investigators are 
trying to analyze. As mentioned earlier, this means that not all variables can 
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be captured, but the model only needs to capture the ones that are meaning-
ful for the problem at hand. Unfortunately, most AI/ML solutions are pack-
aged behind elegant, attractive user interfaces—called dashboards—which 
make them look impressive. As models, dashboards represent a portion of 
reality and must therefore be approached with a healthy dose of skepticism. 
As noted in chapter 1, AI/ML solutions should be driven by a question, 
problem, or challenge, and multidisciplinary teams should be assembled to 
tackle them. While dashboards often seem to incorporate different perspec-
tives and data streams, they tend to be difficult to adapt to new and changing 
circumstances.

What Dashboards Tell You
What a dashboard does for the user is compress disparate information into 
a structured visual interface. The structured dashboard therefore predeter-
mines what is important for the analyst to focus on, prioritizes certain kinds 
of analytical tasks over others based on the tools written into the interface, 
and restricts the information to which the analyst has access based on the 
model’s requirement to structure data in a particular way. This is not to 
say that dashboard interfaces are not useful in certain cases. Rather, it is 
merely to note that they are tools with specific purposes, and no single AI/
ML-based dashboard system is likely to provide a comprehensive solution 
for an organization’s analytical, forecasting, or intelligence needs.

Dashboards and the Curse of the Black Swan
The danger with AI/ML dashboards is that organizations can become cul-
turally comfortable with them to the point that personnel believe they accu-

rately represent reality rather than just a 
small slice of it. The allure of charts, graphs, 
and word maps is that they appear objec-
tive on the surface, and they also tend to 
make for terrific slide presentations. But as 
intrinsically flawed models, they will miss 
important aspects of reality because they 
are developed with bias built into them, and 

sometimes the obscure error value or outlier initially thought irrelevant to 
the model becomes the most important data point over time. 

The allure of charts, graphs, 
and word maps is that they 
appear objective on the 
surface, and they also tend 
to make for terrific slide 
presentations.
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This observation was popularized by Nassim Taleb in his book, The Black 
Swan.6 As a highly trained financial modeler, Taleb came to accept that mod-
eling as a discipline prioritized the average, ordinary, and normal condition 
and gave little consideration to the low-probability but high-impact outlier. 
As a result, financial shocks were difficult to discern and forecast because 
models failed to account for them—doing so would have been irrational since 
applying the time, resources, and labor against such low-probability events 
would have been cost prohibitive for nearly all institutions. Nevertheless, 
Black Swan economic and political crises do strike but often originate in 
places most modelers would not even think to consider.

As structured interfaces, dashboards are susceptible to Black Swan events. 
For all their power to synthesize vast amounts of data and produce adaptive 
analytics, they are nevertheless developed based on a theory of what matters 
and what does not, and they are limited by the need to structure data for the 
visual outputs and the cost of data streams. Again, dashboards might have 
utility for a period of time, but they should always be treated as tools with 
inherent limitations.

Asking Different Questions Reveals Different Aspects of Data
For leaders in the SOF enterprise, the natural tension with big data will 
generally come down to the need to treat operations with a nod to military 
standardization with predictable, efficient, repetitive tasks assisted by tech-
nology versus the reality that big data analytics are most powerful when 
the data is approached from multiple, non-standard perspectives. AI/ML 
models and dashboards can be helpful, but they are biased representations 
of reality, not reality itself. In general, however, military culture expects 
technology to be the solution for telling the Force what it needs to know or 
care about. Big data analytics start with the exact opposite attitude precisely 
to avoid modeling bias. That is, the Force needs to engage the data science 
teams with quandaries or questions, why the questions matter, and how the 
analysis would likely inform analyses and decisions.

To make the most of a big data capability, SOF leaders will need to care-
fully consider how to cultivate a culture of asking questions of the data and 
to create a data architecture open to a range of AI/ML solutions. The SOF 
enterprise does not have a shortage of data; rather, it has a data storage and 
access challenge. While operational concerns seem to compel a focus on 
dashboard interfaces to address the current fight, a true big data culture 
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would prioritize exploring data from different vantage points and ensure that 
the architecture would enable manipulating the data for future, currently 
unknowable questions. Whether for predicting breakdown rates for equip-
ment, optimizing personnel dwell time, forecasting expenses, simulating war 
games, or tracking social media trends, a SOF big data culture should assume 
that AI/ML solutions require reframing how the data could be utilized to 
answer new questions or contribute to emerging requirements. 

For example, data collected specifically for the purpose of tracking 
deployments and dwell time could later be accessed for correlating health 
challenges later in life—same data, two different questions. Similarly, 
unstructured, text-based civil affairs reports designed to provide village 
atmospherics for company commanders could later be ingested to corre-
late the incidents of crop failures on insurgent activity. AI/ML algorithms 
designed to explore the original use of the data, especially through a dash-
board interface, would never be able to reveal the value of the data to other 
mission sets. This requires SOF to first ask the right questions and then have 
the data science teams respond by compiling potential data sources through 
an agile big data architecture.

Summary

All AI/ML solutions are mathematical models and can only represent a small 
portion of reality. Computational error is a natural and inevitable reality 
with AI/ML models due to a variety of factors, including hidden assump-
tions in the model’s design, the limitations on available data, insufficient or 
biased training data, and bias built into a model’s design. While a model 
often appears to objectively reflect reality, choices and trade-offs had to be 
made behind the scenes in the creation of the model, and those choices 
ultimately emphasize certain factors while overlooking others. There are 
rational reasons for doing so, and this is not to assert that AI/ML solutions 
lack value. It is simply to note that AI/ML models are question and challenge 
oriented and can be very useful for addressing those specific items but are 
also constrained by them.

It is also crucial to note that AI/ML models cannot truly predict the 
future, especially in open systems. Effective inductive modeling often gives 
the perception of being predictive, but that is only because the data to which 
they have access is already structured and correlated in a way that allows 
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for near instantaneous ML processing. The SOF enterprise has access to 
some structured data and makes excellent use of it. However, it has even 
more unstructured data that requires extensive pre-processing before it can 
be effective when incorporated in AI/ML solutions. SOF leaders charged 
with developing a big data capability should consequently recognize the 
importance of focusing on the architecture and culture that make big data 
analytics work—a long-term structural endeavor—rather than focus on 
dashboard interfaces that seem to meet current operational needs. The next 
chapter discusses the basic elements of big data culture that will enable the 
SOF enterprise to maximize its data assets, especially once the supporting 
architecture is in place. 
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Chapter 3. Making Big Data Models Work 
Right

Dr. Joan Peckham, Lt. Col. Andrew Geyer 

Think Team, Not Tool

The foundational unit upon which the Special Operations Forces (SOF) 
enterprise relies is the team. Although big data is viewed as an enabling 

technology or a tool, the truth is that it, too, requires a team approach. The 
good news is that culturally, SOF are good at working in teams. The bad 
news is that working in teams to write code, adhere to knowledge manage-
ment requirements, and manipulate databases to feed complex algorithms 
is generally not part of SOF culture. In reality, most organizations struggle 
with this very problem, so SOF are not unique in this regard. 

Just as the varied SOF mission portfolios require specialized equipment, 
tactics, techniques, and procedures to meet unique domain requirements, 
so, too, does big data analytics require specialization of its practitioners. SOF 
are comfortable with the fact that the complex nature of special operations 
means that even the most outstanding SOF operators cannot be true experts 
at everything SOF are required to do. In every type of SOF team across all 
military branches, team members possess additional specialized training 
that allows that operator to uniquely contribute to the team. For example, in 
Army Special Forces teams, there are operators that are individually special-
ized in weapons, engineering, medicine, communications, or intelligence. 
While many picture Army Special Forces, Navy SEALs, Marine Raiders, or 
Air Force Special Tactics personnel when they think of SOF, military pro-
fessionals know that SOF encompass a much wider set of specialized teams 
such as psychological operations, civil affairs, special warfare boat teams 
and special operations aviators to name a few. This variety of SOF teams 
is then further supported by more traditional military teams that provide 
logistics, intelligence, maintenance, contracting, etc.1 Successful senior SOF 
leaders are able to dynamically combine teams of these teams to fit whatever 
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the mission requires—anywhere, anytime, anyplace.2 This same philosophy 
can be applied when creating a data science team to support SOF missions. 

Today, problems are emerging that do not yield to traditional functional 
specialties or disciplinary approaches. Solutions are more easily found when 
teams of experts with different training and perspectives work together. Out-
side the military, scholars, practitioners, and teachers have worked to define 

new disciplines that combine expertise and 
knowledge from multiple existing disciplines, 
including experts from the domains in which the 
problems arise. Data science is a new discipline 
that emerged in this way. With the tsunami of 
data that is swamping all sectors, data scientists 
have responded by forming teams of computer 
scientists, engineers, ethicists, information tech-

nologists, mathematicians, and statisticians to collect, clean, organize, ana-
lyze, and present results that support the solution of data-driven problems. 
To make use of big data, SOF leaders consequently first need to recruit and 
train SOF-capable data scientists or cultivate data science-capable SOF—or a 
mix of both. Then, they must decide how to organize SOF data science teams 
in a manner that makes them most effective at achieving the mission goals.

Fortunately, other sectors have already wrestled with this same prob-
lem of workforce development. For instance, new data science programs 
have recently been developed at educational institutions, and many schools 
are reaching out to retrain the existing workforce.3 Industry has made data 
science training programs and seminars available to their workers. This is 
similar to the computational thinking movement for which curricula and 
training materials are now used—from kindergarten through college—to 
help all students develop computational thinking skills.4 Students majoring 
in every discipline now know that they need rudimentary computing skills 
in order to function and compete in this modern and technology-driven 
world.5 The rise of big data has propelled similar developments, but the core 
of data science is inherently more interdisciplinary than in many other new 
disciplines. Data science and big data require teams of experts to support 
functional problem-solving efforts. 

Big data and data science, therefore, compel leaders to think more seri-
ously about specialization, domain knowledge, and cross-functional teams. 
SOF teams require a mixture of skills, capabilities, and perspectives, and 

Solutions are more 
easily found when 
teams of experts with 
different training and 
perspectives work 
together. 
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question-driven big data analytics similarly require diversity to be effective. 
While many leaders in the SOF enterprise expect big data to be a time-saving, 
automated analytics system, the truth is that most artificial intelligence (AI)/
machine learning (ML) systems require significant human labor—at least 
on the front end of development. There are simple, fast AI/ML solutions, but 
they are likely to be structured dashboards without the flexibility to utilize 
big data in the way the enterprise will need to keep pace with emerging chal-
lenges. Before moving on to the next section describing how to construct a 
data science team, a few more points should be emphasized about big data 
analytics in general.

Big Data Is Not a Fire-and-Forget Tool
Statisticians have long informed researchers of ill-designed studies, sloppy 
data sampling and collection, and poorly configured teams that produce 
results that threaten lives, ruin economies, and worsen the hardships of 
vulnerable populations.6 Given the nature of the SOF mission and influ-
ence, great care needs to be taken in the development of big data analytics. 
This compels consideration about the appropriate approaches for managing 
diverse perspective teams as well as guiding the problem-solving process. As 
discussed in chapter 2, bias is inherent to all AI/ML systems, especially ones 
based on deductive, hypothesis-based analysis. Sometimes analysts become 
so involved in trying to solve a difficult problem that they forget to consider 
whether the basic assumptions are correct. A robust problem-solving meth-
odology includes a more complete depiction of the process that includes this 
first problem-definition step. The process must include early exploration of 
the problem space, the hypothesis formulation, the communication of the 
results after problem resolution, and the iterative aspects of the process. 
Diversity of background, domain knowledge, experience, and perspective 
help to mitigate issues with bias and highlight incongruities in results. 

Stated more explicitly, there are good and bad approaches to big data 
analytics, and organizations that fail to invest in teams to develop models 
will experience problems and pain once the limitations of the models emerge. 
SOF leaders need to become comfortable with the idea that data science 
techniques cannot simply be developed and allowed to process data in an 
automated way. Instead, big data analytics requires continuous evaluation, 
updating, and improved data sources. Expert training and cross-functional 
teams are needed to explore multiple potential alternatives. Some scientists 
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use an array of analysis tools, each of which has strengths and weaknesses, 
and then, informed by the existing domain knowledge, converge on an inter-
pretation of the data. That is, if the data is indicating something about a 
domain that is inconsistent with what the most knowledgeable experts know 
about the domain, there might be something about the analytical approach 
that is flawed. Or perhaps the team is on the frontier of a new discovery. But 
it takes discussion between the analysis experts and the domain experts, and 
perhaps further analysis, to sort this out. 

Once the experiments or questions are designed and the data is collected, 
organized, and cleaned—that is, structured in a way the AI/ML model can 
process—data science experts must choose from an array of models, tools, 
and techniques to analyze the data. Matching the dataset to the statistical, 
mathematical, or computational analysis technique requires expertise in 
multiple disciplines. Domain or subject matter experts (SMEs) must explain 
to the analysis experts—the computational coders—the nature of the data 
and the questions they are asking. They provide needed links to the knowl-
edge base in the domain of analysis. The analysis expert must explain to the 
team the nature of their techniques. To construct an AI/ML model, the anal-
ysis expert must determine a number of factors: What are the strengths and 
weaknesses of each technique? What are the assumptions that are needed 
for a correct and robust result? To which dataset types can the techniques be 
applied? Where possible, and it is frequently not possible, it is best to have 
the analytics team at the table when the experiment is designed and before 
the data is collected. 

The problem-solving process should also acknowledge that not every 
problem can be solved using the gold standard of hypothesis formation 
before data collection and well-designed comparison groups. Much data 
today is collected and archived before questions are even asked. Instead of 
moving from hypothesis to experimental design to solution and replication, 
data is now coming at such a rapid speed that it might not be feasible or 
ethical to design comparison groups, nor can the data always be collected 
again for replication. Quasi-experimental, inductive analytical techniques 
and ML approaches can now be used on messy datasets after cleaning and 
organization to get results that are almost as reliable as more traditional 
techniques. Sometimes, if conditions permit, it is possible to perform early 
explorations of existing data to support and define a hypothesis, design an 
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experiment, and collect more data using traditional statistical approaches 
to confirm the trends that have been uncovered.

Powerful If On Target, Costly If Not
The point here is that big data could in theory generate a force-multiplier 
effect for SOF, but only if the enterprise first creates the culture and condi-
tions for using it correctly. As mentioned in chapter 2, dashboard-oriented 
and spaghetti-on-the-wall inductive analyses designed to ingest everything 
and “tell us what we need to know” are the wrong ways to think about big 
data in many cases. To make big data a powerful 
tool, the emphasis needs to be placed on creat-
ing cross-functional teams of domain experts 
and analysis experts. Any expectation that big 
data will save time and effort must first question 
whether the task is fundamentally about auto-
mation or about analyzing a novel circumstance 
or evolving operating environment. The conse-
quences for decision makers are extraordinary, 
and those responsible for creating big data structures must take into account 
the medium- and long-term effects of their approach.

The Cross-Functional Team as a Big Data Necessity

Years ago, many experts and managers in the private sector hoped that the 
application of data analysis tools to data would yield savings in time and 
money. There are many companies selling and installing ML dashboards to 
support these needs. Consumers of these products hope that they can push 
a button to quickly get results that inform planning, policy, and strategy. 
The reality today is that these approaches can make an organization more 
agile, knowledgeable, and competitive but require effort and planning to 
coordinate interdisciplinary teams and apply and understand the results 
of data analysis. Human resources and domain experts are as important 
as software and hardware and are important parts of the ecology of data. 

Organizations must train personnel to properly collect and organize the 
data before applying high-end analysis tools; this effort is significant and 
often very expensive. Professionals that apply analysis tools to their data 
must use robust data modeling techniques for organizing and archiving data 
before accessing and analyzing it. This has always been the case for statistics, 

To make big data a 
powerful tool, the 
emphasis needs to be 
placed on creating 
cross-functional teams 
of domain experts 
and analysis experts.
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but the characteristics of big data compel even more caution.7 Most data-
driven communities have already become good at collecting piles of data. 
However, few are well organized for collecting, cleaning, archiving, and 
organizing data in ways that support meaningful analysis. The computing 
and statistical communities warn of the garbage in, garbage out phenom-
enon if these steps are skipped. This kind of mistake or oversight can lead 
to money, lives, and reputations ruined or lost.

Managers in industry and government have long recognized the impor-
tance of cross-functional teams. Scientists and engineers might not have 
created the ability to walk on the moon or sequence the first DNA as early 
as they did without effective interdisciplinary teamwork. Scholars have char-
acterized the continuum from multidisciplinary through interdisciplinary 
to transdisciplinary as increasingly engaging teams possessing expertise in 
multiple diverse disciplines to consider and integrate approaches for solving 
difficult problems. No-boundary thinking is a next step in which the bound-
aries among disciplines are erased to bring problem solvers from different 
perspectives to the table at the very beginning of the process to define the 
problem and then move through the various stages of solution.8 The first 
important step is to be sure that the right questions are asked.

Data Scientists and Analysts
How would a cross-functional team proceed to solve no-boundary problems? 
The first step is acknowledging that problems do not neatly fall into disci-
plinary silos. Given that research indicates cross-functional teams of experts 
usually outperform uni-perspective teams, a difficult problem might be more 
likely to yield to a cross-functional team.9 A potential process framework for 
a no-boundary problem solution might be the following:

1.	 A vague (or crisp) sense of a problem emerges.

2.	 Invite a cross-functional team to consider the problem and better 
define it.

3.	 Adjust the composition of the team with the diverse expertise needed. 

4.	 Attend to the psychological factors that are unique in teams with 
diverse perspectives. 

	■ Consider approaches for flattening the hierarchy to ensure that 
everyone feels comfortable contributing. 
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	■ Develop evidence-based techniques for listening and giving every-
one a means to be heard. 

	■ Be respectful and share and define vocabulary across disciplines. 
	■ Acknowledge that teammates will not know everything about one 

another’s disciplines and that it is their responsibility to provide 
needed domain information. 

	■ Train the team in empathy, listening, and communication as well 
as appropriate rhetorical skills.

5.	 Do not support parallel play unless it is clear and agreed that a dis-
tributed approach is best for the problem at hand. If that is the case, 
there should still be some communication at important milestones 
during the progress of the project. 

6.	 Develop a unified means for communicating the problem and its 
solutions among the team and to the stakeholders. 

Just as with any other SOF mission, the personnel assigned to the team 
performing the mission must have the correct set of skills required to achieve 
the mission objectives. Yael Garten, for instance, argues that most data sci-
entists must effectively specialize into what she calls “decision scientists” or 
“modeling scientists.”10 In this framework, decision scientists create analysis 
for human consumption while modeling scientists create output that serves 
as input for other machines. For SOF missions, one may be inclined to think 
that SOF only require decision scientists and not modeling scientists. While 
what Dr. Garten calls decision scientists would have the skill sets to conduct 
the analysis needed to create dashboards and other useful tools for com-
manders from large or incomplete datasets, this is not the only area where 
SOF data science teams can enhance mission effectiveness. Modeling scien-
tists can and should play a big role in supporting SOF mission sets. Creating 
big data models that in turn feed other models can be incredibly useful in a 
number of SOF mission areas. For example, a natural language processing 
model can aggregate structured data from thousands of unstructured text 
documents which can then be analyzed by network models to create useful 
intelligence analysis. Just as SOF require a wide variety of operators, they 
also require a wide variety of data scientists.

Garten acknowledges that “full stack” data scientists who can do 
all aspects of data science do exist but assesses that they are rare and 
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exceptional.11 While Dr. Garten is speaking solely about data science for 
industry, this assertion is believed to hold true within the military data sci-
ence community. Most military data scientists tend to specialize in one or 
more subsets of the total data science skill set. But there are exceptional full 
stack data scientists in the Department of Defense (DOD) who are true data 
science generalists. SOF leaders should seek out these data science generalists 
and recruit them for SOF data science teams. Just as SOF operators must 
be exceptional at their job, SOF data scientists must also be exceptional at 
theirs. This is due to the likely size of SOF data science teams as well as the 
nature of the data that SOF data science teams might encounter. SOF teams 
are often very small and widely distributed when compared to conventional 
military units. So, a single data scientist might have to run multiple different 
types of data science projects at any given time. This scenario is very much 
like the industry small startup scenario that Dr. Garten describes as ideal 
for the rare data science generalist.12 

Since SOF live in the grey zone where data is often unstructured, incom-
plete, and of varying reliability, a SOF data science team might have to 
completely change their plan of action depending on the mission situation, 
changes in available data, and changes in timeline requirements. The SOF 
data science team leader might have to iteratively apply something like the 
U.S. Army Rangers’ troop leading procedures (TLPs) throughout the project 
in order to answer the questions he or she is tasked to explore. Eric Colson 
asserts that this exact type of scenario requires data scientists who are gen-
eralists.13 Colson argues that dividing up labor among many specialized 
data scientists only serves to slow down the project, make it more expensive, 
and limit utility of any resulting models or analysis by depriving the data 
scientists of the larger context of the problem they seek to solve. Data scien-
tists who are able to see the larger picture, he argues, are more effective at 
obtaining useful results.

Senior leaders in military data science sometimes speak about unicorns—
former operators who now possess advanced academic degrees in fields 
related to data science. They are a rare thing, a single person who is both a 
data scientist and a SME on SOF operations. Unicorns are even rarer than 
true data science generalists. While SOF leadership should most certainly 
make an effort to recruit operators with the requisite background to pursue 
the education required to become a data science unicorn, it is unlikely there 
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will ever be sufficient funding and manpower to fulfill all SOF data science 
requirements with unicorns.

Subject Matter Experts
Data scientists cannot by themselves create big data solutions since their 
expertise lies with statistical analysis, computer coding, and/or data visu-
alization. To make the models in the first place, there must be sensemaking 
about the issue or challenge, and that can only come from domain or SMEs 
who study it. Just as SOF operators are most effective as part of an integrated 
team, data scientists are most effective when working as part of a cross-
functional team with relevant SMEs.14 The complex and delicate nature of 
SOF missions means that a SOF data science team could require not only 
regular input from SOF experts but also input from SMEs in areas as varied 
as international relations, local culture, social science, anthropology, medi-
cine, public health, history, language, physics, or engineering. These SMEs 
from fields relevant to the project need to be present from the beginning to 
assist with data collection, data hygiene, and output interpretation. Without 
SMEs in the loop from the beginning, a data scientist can make a seemingly 
useful model or conclusion that is, in fact, completely misleading or is not 
feasibly actionable.15

SMEs are typically in short supply in the military just like data scientists. 
Many leaders’ faith in employing big data is due to the perception that the 
technology will compensate for the lack of domain knowledge—the “gon-
culator” will give them what they need. While the ideal situation would be 
for SMEs to be organic to units, which is possible in some cases, as a rule it 
will be difficult to make happen. Rather than thinking about the process as 
a matter of possession—the SME is resident in the office—perhaps it is more 
fruitful to imagine how SMEs can be invited in for a particular purpose, 
such as issue discovery and framing, and then consulted periodically for 
analytical purposes. The takeaway here is that big data cannot eliminate the 
need for SMEs; rather, it might just create more options on when and how 
they are integrated into the system.

Users
At the end of the day, the data scientists and SMEs are there to serve the 
needs of the user—the action officer whose job it is to translate the analy-
sis into effect. The user is not expected to have domain knowledge or data 
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science skills, but he or she knows why the information is being requested 
in the first place. The user’s perspective is ultimately the one that must be 
accommodated, but to do so correctly, the data scientists and SMEs must 
work with the user to correctly frame the questions and determine what 
the available data can actually address. Moreover, the data scientists must 

generate analytical and visual products that 
enable the user to communicate vast amounts 
of information intuitively.16 Without the user’s 
perspective, the data scientists and SMEs are 
likely to create elegant but ultimately mis-
aligned results. Users with general awareness 
of the principles underlying big data are all 
that is required. Armed with the concepts in 

chapters 1 and 2, a user could very easily interact with the rest of the cross-
functional team. 

Which Comes First: The Subject Matter Expert or  
the Capability?

In the U.S. military, the natural impulse is to buy the technology and hire 
the staff to make it work. Sustainable big data solutions, however, require 
a different mindset. With technology evolving so rapidly, expenditures on 
hardware and software could become potential liabilities if the personnel 
cannot use them due to a lack of skills. The allure of dashboards is precisely 
because they appear to have done all the hard data science and SME work 
up front. But to generate an appropriate capability for SOF, the enterprise 
needs adaptable, not static, systems. Lessons from industry suggest that 
investing first in the personnel and human resources aspect of big data will 
yield greater dividends than purchasing hardware and software.

Considerations for Developing a Capability
It should be evident by now that making good decisions with big data is not 
about purchasing a tool and pushing a button. A ML, statistical, or math-
ematical technique is a tool and not an oracle. Experts with diverse training 
are needed to know when to use a tool, how to use a tool, and which tools to 
use for a particular problem and dataset. There are many important steps that 
proceed and follow the use of such tools, and different types of expertise are 
needed at each step. As with all things SOF, people are more important than 

Without the user’s 
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but ultimately misaligned 
results. 
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hardware, so investing in the human resources of data science concepts and 
big data cross-functional team behavior constitute baseline undertakings 
for an enterprise solution. At a minimum, human resources approaches to 
developing a big data capability should:

1.	 Invest in rudimentary training in the data science core—math, sci-
ence, computing, analytics, and ethics.

2.	 Create a process for cross-functional team development that:
a.	 Picks the right tools for the problem and dataset. This means under-

standing an array of tools and having access to experts in multiple 
domains who are knowledgeable about these tools.

b.	 Recognizes when teams need deep expertise in a domain that they 
do not possess.

c.	 Recognizes when the proper analysis tool for the problem does not 
exist and knows whom to call to tweak existing tools or develop 
new ones. There is a difference between learning how to use existing 
tools and knowing how and when to build new ones. 

d.	 Considers information technology tools to support communication 
among teammates. 

3.	 Include multiple perspectives at the problem formulation stage. Deep 
integration of design is important.17

To further ensure the effectiveness and resourcing of SOF big data teams, 
they should likely be embedded in operational and strategic headquarters 
with sufficient infrastructure to support high-performance computing. Team 
leaders need to have access to senior leaders to ensure the team is properly 
resourced and working tasks that matter to the overall SOF objectives for 
the headquarters. The personnel on the team should be uniformed or DOD 
civilian workers, as near-peer adversaries have shown a tendency to infiltrate 
or exploit technology companies for their own objectives.18

Big Data Pitfalls: Expectation Management in the Transition to a Big 
Data Capability
A properly constituted big data cross-functional team would minimize 
the risk of falling into one or more of these three pitfalls of data science: 
data hubris, hidden bias, and failing to capture uncertainty. Data hubris is 
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assuming that traditional data collection and analysis can be avoided when 
using a massive dataset that can be fed into a data science modeling tool. One 
example of this is Google Flu Trends (GFT). The GFT prediction tool was 
designed to predict doctor visits for influenza-like illness using 50 million 
search terms to fit 1,152 data points. The GFT failed as a stand-alone tool but 
became more useful when combined with more traditional science-based 
techniques.19 In this case, data hubris was a problem because the Google data 
scientists had extensive experience working exclusively with large and com-
plete datasets. Data scientists who have worked exclusively in internet-based 
companies may be prone to this type of data hubris because they are used to 
having all of the data they need collected from every possible customer. The 
dataset used for the GFT turned out to be big but incomplete. As previously 
discussed, SOF live entirely in a world where the data may be incomplete, 
unavailable, or unreliable. For data scientists used to working on large, com-
plete datasets, data hubris may be a problem. Conversely, data hubris may 
also be a problem for personnel with minimal training in data science who 
are acting as a data scientist. Data science tools are user friendly and widely 
accessible. It is all too easy to use these tools without possessing the ability to 
discern if the resulting output has merit.20 There is nothing more dangerous 
than a half-trained soldier with a powerful weapon.

The second major pitfall that a team might face is hidden bias. Hidden 
bias can enter in three possible stages. The first stage is when the team decides 
what question(s) they really want to answer. How the problem is framed 
can “bake in” bias. Karen Hao uses the example of a bank trying to find the 
most creditworthy clients morphing into a model that targets customers for 
predatory, subprime loans due to the mathematical model being formulated 
solely to maximize profit.21 The bank intended to ask, Who are our best 
customers? but ended up accidentally asking, Who are the best targets for 
predatory loans? The second stage where bias can be introduced is when the 
data is collected. A noted example is from facial recognition datasets. Too 
many companies working in this area have relied too heavily on images of 
people with lighter skin tone, thereby biasing their facial recognition results 
so that people with darker skin are not recognized accurately.22 The last stage 
where bias may be introduced is when the data is scrubbed for analysis. If 
the data science team fails to include the appropriate SMEs and statistical 
techniques, it is possible that the wrong set of variables will be selected for 
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inclusion in the resulting data science model, thereby creating a model with 
poor predictive or analytical utility.23

The third major pitfall for a SOF data science team to avoid is the fail-
ure to capture uncertainty in their results. Traditional statistical regression 
models provide rigorous methodologies for quantifying the impacts that 
input variable values have on the resulting output variable values.24 When 
the problem calls for more complex techniques such as deep learning, the 
contributions of the input variables to the output variable values are much 
harder to discern. This is a scenario where experienced data scientists are 
needed to work alongside relevant SMEs to ensure that the uncertainty in any 
conclusions is properly quantified or, at the very least, commented upon.25

Leading the Big Data Team

Most SOF ground operators use some variant of the eight-step TLPs found 
in the Army’s Ranger Handbook when conducting tactical mission planning. 
While TLP is designed for infantry squad or platoon tactics, it can be applied 
to any small team, or team of small teams, tasked with achieving an objec-
tive. The utility of TLP and SOF operators’ familiarity with it make TLP a 
convenient methodology to use for applying data science techniques to big 
data for SOF mission planning and execution. The rest of this section will 
walk through the eight steps of TLP and explain how they can be applied to 
data science and big data.26

Step 1. Receive the Mission
This is the step in TLP when the unit leader receives an operations order 
(OPORD) or fragmentary order that specifies the mission. The leader then 
conducts a hasty analysis centered on preparation and planning. The leader 
of a data science team conducts the same steps when presented with a new 
problem to tackle. The data scientist’s hasty analysis involves first under-
standing exactly what question(s) is being addressed. Is the analysis required 
descriptive, diagnostic, or predictive? Descriptive analysis extracts insight 
about what has happened in the past. Diagnostic analysis looks to determine 
why some known event has happened or is happening. Predictive analysis 
uses data to gain actionable insights about what is most likely to happen in 
the future.27 Each type of analysis requires a different approach using similar 
skills, but understanding which type of analysis is required up front is criti-
cal to mission success. There is no benefit to answering the wrong question.
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Step 2. Issue a Warning Order
In this step, the leader issues preliminary instructions in a warning order 
(WARNORD) so that the team can begin preparations. In an infantry squad 
or platoon, this is accomplished using the five-paragraph OPORD format. 
Paragraph one provides information to subordinates so that they can under-
stand the current situation. A data science team leader does the same when 
first relaying the description of the analysis required to the rest of the data 
science team. The second WARNORD paragraph explains the unit’s mission. 
This is where the data science team leader coordinates with a diverse team 
the metrics that will be used to assess the team’s effectiveness at addressing 
the analysis problem. The third paragraph discusses mission execution to 
include the desired end state. In data science terms, this is where the team 
leader explains why the analysis is needed and what minimum values of 
the performance metrics are required for the resulting analytic model to be 
declared useful or appropriate for the task. Paragraph four lays out logistical 
requirements. This is the same for a data science project. The team leader 
needs to describe what resources in computing, data storage, and personnel 
are available to address the task(s) at hand. Finally, the fifth paragraph in 
an infantry WARNORD states where command and control elements are 
located during the planned operation. For a data science team, this is where 
the team leader spells out the team organization, who is the point of con-
tact for specific parts of the project, and any external resources that may be 
available for assistance in the event that the team meets a stumbling block.

Step 3. Make a Tentative Plan
This is the step where the infantry leader makes his own assessment of the 
situation and begins making his plan. A data science team lead does the same 
by scoping the project. Like his infantry counterpart, the data science team 
leader first examines mission, intent, and concept for the question(s) he or 
she is tasked to answer. Next, the team leader examines unit tasks. Just as it 
is for the infantry, the data science team has to examine both specified and 
implied tasks. For example, Connaboy et al. had the sole specified task to 
create a model that predicts lower-extremity injury in U.S. Special Forces.28 
That led to a number of implied tasks, some of which are listed in table 1.
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Table 1. Example Specified and Implied Tasks. Source: Medicine & Science in 
Sports & Exercise 

Specified Tasks Implied Tasks
Create model that predicts 
lower-extremity injury in U.S. 
special forces

Determine set of measurable variables related to lower-
extremity injury 

Determine method for quantifying lower-extremity injury rates
Obtain appropriate volunteer subjects for injury study

The next part of the planning process involves specifying unit constraints. 
This is where an infantry leader spells out the prohibitive and proscriptive 
constraints on the team. A data science team leader does the same. Some 
examples of these constraints for data science teams are listed in table 2.

Table 2. Unit Constraints for Data Science Teams. Source: Author, Forbes, Wake 
Forest Law Review 

Prohibitive Constraints Proscriptive Constraints
Laws and ethics governing data collection Document all assumptions made in analysis
Access to relevant data Review published literature for current techniques
Computer hardware limitations Practice good data hygiene 

The data science team leader then identifies the mission essential tasks 
based on the constraints and the specified and implied tasks. These tasks 
are specific to each data science problem the team faces. For the data science 
team leader, this TLP step culminates in restating the question(s) under 
investigation in terms of mathematical models with quantifiable input and 
output variables. If applicable, this is where the data science team also dis-
cusses limitations of the techniques or mathematical models they intend 
to use including model assumptions and uncertainty in the model results.

Steps 4–6. Initiate Movement, Conduct Reconnaissance,  
and Complete the Plan
In these steps, infantry teams make physical movements to scout the situ-
ation and adjust the tentative plan as needed. These steps can occur simul-
taneously with the previous three steps of the TLP. The leader may rely on 
other team members to provide information required to adjust the plan to the 
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current situation. Data scientists and engineers recognize this as a parallel-
ized planning process. Like an infantry squad or platoon, a data science team 
also conducts reconnaissance and adjusts the plan as the situation evolves 
or new perspectives are added to the team. However, the data science team’s 
reconnaissance is of the computing resources, mathematical techniques, and 
data sources available for the project versus the terrain and personnel in the 
objective battlespace. Most data science team leaders delegate tasks when-
ever possible to members of the data science team with the applicable skill 
or subject matter expertise just as a SOF team leader delegates appropriate 
mission tasks to the various specialized operators on the team. 

Step 7. Issue the Operations Order
In an infantry squad or platoon, this is where the leader ensures every 
member of the team understands the plan and his or her role within it. This 
may involve quizzing each team member until every member knows their 
part by heart. While it would be unusual for a data science team leader to 
quiz individual team members on their role in a project, data science team 
leaders do enact a version of this step of the TLP. In the data science version 
of this step, the team usually gathers around a large screen or dry-erase 
board to walk through the plan for addressing the data science problem 
and everyone’s roles in the project. This usually also entails determining 
timelines, potential bottlenecks, and constraints on the project. Some data 
scientists and engineers refer to this step as “whiteboarding” because of the 
common use of dry-erase marker boards. It is very much the data science 
equivalent of the Army’s rock drills prior to an operation.

Step 8. Supervise and Refine
This final step is where an infantry squad or platoon leader conducts rehears-
als and inspects the team’s equipment to ensure they are able to successfully 
conduct the planned operation. While inspections and rehearsals are not 
necessary for tackling a data science problem, data scrubbing and screen-
ing experiments are almost always required, especially when dealing with 
big data. Data scrubbing is the act of practicing good data hygiene. It is the 
data scientist’s version of an equipment and personnel inspection. Good data 
hygiene requires the steps in table 3.
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Table 3. Data Hygiene Steps. Source: Forbes

1. Audit the data for accuracy and completeness
2. Standardize data formats across all sources
3. Determine guidelines for which data to include and exclude
4. Automate rules for removing future “bad” data
5. Ensure data remains up-to-date
6. Eliminate silos within the organization (cross-feed information)

Steps three and four of the data hygiene process are usually conducted via 
one or more screening experiments. Screening experiments can be thought 
of as analogous to the infantry platoon rehearsal prior to an operation. 
Screening experiments are smaller data science projects that are deliberately 
designed with the objective of determining which variables in the dataset 
should be included in the larger data science project.29 While these screening 
experiments are conducted to narrow down the data to just those variables 
that matter for the data science project at hand, they also allow the data sci-
ence team leader to assess the strengths and weaknesses of the data science 
team members. This kind of preliminary work can sometimes serve as a way 
to sharpen team skills before beginning the larger project depending on how 
large the big data may be. In addition to screening experiments, steps three 
and four may also require consulting data SMEs in the field(s) from which 
the data originates. These SMEs can assist with determining which input 
variables are more likely to provide insight into the output variable(s). SMEs 
can also provide expertise regarding the validity of any data science models 
created. SMEs in combination with data scientists are also most effective 
at ensuring the data science project avoids “baking in” any biases into the 
resulting model that maybe make the data science model look valid when, 
in fact, it is missing critical data required to make accurate predictions, 
inferences, or decisions.

SMEs are also very useful at assisting data scientists with steps five and 
six of the data hygiene process. SMEs provide insight into what the data 
means and how the variables in the data are expected to relate with each 
other. They know relevant data sources, where current research is headed in 
their respective fields, and how often data should be refreshed. While data 
scientists provide expert insight on how to formulate variables from raw data 



68

JSOU Report 21-9

in a manner that makes them interpretable by the applicable mathematical 
or statistical models, SMEs play a critical role in helping the data scientists 
determine which data at which resolution to include in data science projects 
relative in their field. 

Conclusion

Contrary to popular conception, big data is a personnel-intensive analyti-
cal process, not a labor-saving efficiency tool. The real benefit of big data is 
the ability to make evidence-based decisions. While it takes more work, the 
benefit is not speed or lower cost, but better evidence—if it is done well. The 
purpose of Part I of this monograph has been to provide the basic concepts 
on how to conduct proper big data analytics. 

When approached properly, big data analytics require data scientists, 
domain SMEs, and users to work together in collaborative teams to deal 
with often novel datasets to answer novel questions. Leaders who assume 
big data can save labor effort are likely imagining automated functions or 
dashboard interfaces that are relatively static. When thinking about big data 
as an enterprise solution, however, it is crucial to recognize that the cross-
functional team lies at the heart of the undertaking and getting the human 
resources component right from the beginning is the first critical step in 
making big data capability the force-multiplier it could possibly be. 
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Chapter 4. The Management Culture for 
Big Data

Mr. Gaurav Tanwar

As the previous chapters indicate, a big data management paradigm must 
be instituted if the force is to evolve with and capitalize on disruptive 

technological developments and make the most of its personnel, not just 
adapt to the times. This calls for something beyond strategy; it requires a cul-
tural update because “culture contains strategy.”1 (This phrase is sometimes 
colloquially altered to “culture eats strategy for breakfast.”) The management 
culture for big data requires moving beyond thinking of technology as an 
add-on enabler; rather, it contains a set of values, attitudes, and behaviors 
that often conflict with military culture. This chapter provides an overview of 
the management culture traits that best align with big data use and contrasts 
it with military culture and challenges. It begins by discussing the values and 
attitudes necessary for a productive big data culture, highlights some chal-
lenges military leaders are likely to face, and concludes with some models 
that have been tried in the government for leading big data culture change.

Big Data Management Values and Attitudes

Of the many values exemplified by the force, the three values most appli-
cable to the formation of proper big data culture are agility,2 adaptability,3 
and technical humility. The first and foundational big data culture value is 
agility, which is distinguished from mere speed. Anyone can move fast, but 
speed paired with control creates agility that serves a purpose. This mental-
ity is exemplified by agile methodology, the current industry standard in 
big data project management, which emphasizes rapid testing to find what 
works, minimizes paperwork, and fails fast but early.4 While parts of this 
methodology are in natural tension with government requirements, such as 
minimizing paperwork because the government must document its activi-
ties, there are ways it can be incorporated into a military big data culture. 

The second value, adaptability (often considered flexibility), is defined in 
this context as comfort in working with the unfamiliar, finding asymmetric 
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payoffs, and exploiting opportunities for rapid assimilation.5 Russian actions 
are a prime example of this value. Those in the counter-disinformation/mis-
information space have seen Russian trolls change tactics and approaches, 
adapting when they find themselves flagged or countered by tech platforms 
on which they operate, or boosting a message if the target audience is found 
to be receptive. This ability to pivot and press an advantage is extremely valu-
able, showcasing adaptive fluidity in the face of obstacles. This approach has 
yielded results for relatively little cost from Ukraine to the United States.6

The third value, technical humility, is a caution reminding managers 
that technical solutions should not displace human decision makers nor is 
faster always better.7 Human judgement should be informed by technical 
tools and amplified by the systems at their command. To forget this precept 
is to abdicate responsibility to algorithms, an unacceptable reality when 
it comes to the particular responsibilities the interagency bears. Manag-
ers must remember that big data is based on models, and while models 
have utility, they do not perfectly reflect reality, and overreliance on them 
leads to a blinding of human understanding. A conceptual model’s primary 
objective is to convey the fundamental principles and basic functionality of 
the system it represents in an easily understood manner. Models can thus 
support frameworks in which the user can think and make decisions by 
refuting misconceptions, better highlighting constrained actions, and more 
precisely targeting objectives.8 Moreover, managers must remember that 
context matters in the application of big data; successful application in one 
instance does not necessitate successful or appropriate application in another 
instance.9 10 It is very easy to simply follow a technical system’s advice think-
ing that it knows better, mistake a model’s output for truth, or apply a great 
new method to every problem regardless of the context surrounding that 
problem. Ingraining the above values and cautions can help organizations 
grow and maximize big data culture, navigating the bright ideas and new 
fads that inevitably appear. In developing an enterprise capability, however, 
managers should also be mindful of the attitudes most suited for a big data 
architecture for the long haul. These attitudes are patience, willingness to fail 
properly, awareness of the layered and distributed Special Operations Forces 
(SOF) user base, and sensitivity to the governance practices in big data.
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Patience
One of the largest hurdles in developing an enterprise-oriented big data 
capability is a common problem in many large organizations: teams are 
overburdened with responsibilities which leads to a lack of patience. As an 
example, SOF are not positioned to capture the gains from big data advances 
because they have been fighting for over 20 years in two extended combat 
campaigns and engaged in multiple other operational theaters of various 
kinds worldwide. According to a review by the U.S. Special Operations 
Command (USSOCOM) commander, this has affected the force’s preference 
for combat-focused capabilities over other investment opportunities.11 The 
growth of USSOCOM in the past two decades has largely been in response 
to all the things it has been forced to take on instead of deliberate growth to 
achieve targeted objectives. 

Whether it is the need to meet operational requirements, fiscal years, 
or quarterly reports, patience remains in short supply. After all, patience 
in a world of rapid change, competitive pressure, and an unrelenting pace 
is a difficult thing. It is understood that big data culture cannot be quickly 
implemented in an existing large organi-
zation and requires careful consideration. 
However, this lies in natural tension with 
the pace at which most organizations find 
themselves operating. Unfortunately, “win 
now” culture leads to dashboard-type solu-
tions, not enterprise architecture development. There is an old maxim refer-
ring to the iron triangle of Good/Fast/Cheap.12 In short, pick two of the 
three, if lucky. In this instance, what is being created has to be good, and 
it is not going to be cheap, so fast is off the table unless managers settle for 
dashboards and all the limits inherent to them. 

To take one example from the past decade, there has been a continued 
urgency related to open-source intelligence (OSINT) collection and pro-
cessing, but there is yet to be a true enterprise solution. Part of the issue is 
certainly attributable to the various authorities and titles inherent to orga-
nizations conducting this mission. However, part of this is due to the fact 
that organizations want to get something now with the idea that anything 
they can do to meet the mission’s needs will be better than doing nothing. 
Once the tool is obtained, there is then little pressure to create an enterprise 

After all, patience in a world 
of rapid change, competitive 
pressure, and an unrelenting 
pace is a difficult thing.
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solution as other priorities take over and people make do with what they 
have. In the publicly available information OSINT world, that could be 
everything from not pricing in maintenance and upgrades to the lack of 
hiring the right personnel to failing to account for the steps necessary to 
harmonize the type of data being collected with the product secured. While 
this is a simplified account of a common Gordian knot, the observable end 
result is a range of single-purpose dashboards across the military and inter-
agency, often without the ability to speak to each other, but no real enterprise 
solution. 

The aim here has to go beyond building the tools and instead to the cul-
tural foundation, which takes time to instill. The manager’s thinking must 
be shaped by the considerations that create time constraints, key events 
that should shape the timeline: How long will it take to execute correctly? 
How long will it take to inculcate the right skills into the force? Will that go 
beyond my tenure here? How vulnerable does this shift make the force? And 
for how long? To whom? Once objectives are benchmarked against external 
and internal factors, the framework is set for patience. 

Failing Properly
The second hurdle is the acceptance of failing properly, a concept derived 
from the hard sciences wherein even negative results or failed experiments 
are supposed to be published,13 so that others in the field may learn from the 
experiment’s failure. Leaders who wish to inculcate the required big data cul-
ture must become comfortable with the promotion of failing properly. This 
goes beyond accepting failure. It is about shepherding unorthodox thinkers 
who take risks up the ranks,14 encouraging fast failure in conjunction with 
the continuation of successful programs.15 Every organization will have to, 
at some point, take large risks, and if they have not held on to the personnel 
who have taken large risks before, the organization will not have the diversity 
of expertise needed to see them through the riskiest of times. They will have 
people who fit within the existing organizational culture, not those who are 
best suited to adapting to and addressing the problem at hand.16 This is an 
uncomfortable position for many institutions, as success in all things is now 
an expected cultural norm. But if institutions are unwilling to judiciously 
fail, they are not only unwilling to reach as ambitiously as needed, but they 
will be unprepared for when they will be forced to act creatively in the face 
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of unorthodox challenges. It is not enough to say fail fast; there must also be 
commendation and promotion of those who fail properly.17

Failing properly in the big data paradigm does not have to be a mysterious 
process. Existing practice with this process already exists within the hard 
sciences. It means documenting failure in detail, coalescing lessons learned, 
and sharing the accumulated knowledge widely in excruciating detail for 
review by peers. This is done so that others may learn to not pursue those 
same avenues, shed light on what happened, and then do better. This way 
is no different than how the scientific method is employed.18 This acknowl-
edgement of failure is not easy, it is not comfortable, and it takes a great 
deal of moral courage, but it is absolutely necessary if organizations, large 
and small, are to move forward with a big data capability. Leaders must not 
only acknowledge this but put themselves on display. In the same way that 
others follow when leaders are the first through the breach, the first to the 
fight, leaders must be willing to say “follow me” when acknowledging fail-
ures. A properly documented failure is as important as, if not more than, an 
improperly documented success. 

A Distributed, Layered User Base
Many organizations are stuck in the processing-exploitation balance in 
which they take in a tremendous amount from the oceans of data being 
produced every day,19 yet they are only able to exploit a fraction of it. The 
challenge of full exploitation and analysis has yet to be completely overcome 
partly due to the sheer scale of data creation and the fact that leaders have a 
plethora of questions that need answers, resulting in a prioritization issue. 
Rather, with big data, the objective ought to be how to enable organizational 
culture to pivot when and as needed to answer new and novel questions.20 
Enabling this pivot requires a distributed, layered user base with access to 
the appropriate data at the appropriate level of classification. Together, this 
provides the foundation that a proper big data culture can use to answer the 
questions sought in the related but multifaceted pursuit(s) of their mission. 
This does not answer the question of what knowledge the organization seeks 
to generate; rather, it answers the more fundamental question of how the 
organization creates a shareable, universally exploitable, enterprise-wide 
knowledge base.

Effective big data requires continuity of data entry, not just the old gar-
bage in-garbage out conversation, but also refreshing the data so as to not let 
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it rot due to the velocity aspect of the five V’s.21 Achieving enterprise-wide 
standards of entry despite the multiple headquarter (HQ), component, and 
unit cultures of SOF would result in the fluid creation of new knowledge for 
the force to answer existing questions or for querying in the face of future 
unpredictable, emergent challenges. This is where artificial intelligence (AI) 
ultimately enters into the organization’s observe–orient–decide–act loop.22 
The combination of data volume, velocity, variety, veracity, and value23 form 
a clean river of data from which the organization can feed machine learning 
models, which can then grow algorithms quickly and efficiently. Without the 
proper big data culture, potential will be squandered. Without an enterprise 
approach, reach will be stymied. Without the best possible data stream, 
results risk being tainted, outdated, biased, and/or without value.24 Utiliz-
ing this data requires full organizational buy-in to create a unified system, 
training pathway, and quality control process despite the distributed and 
layered SOF user base.25 

Governance
Even with the first three attitudes in place, there are some specific hurdles to 
overcome related to issues of governance and classification. It is impossible 
to discuss one of these issues without addressing the other as they are so 
interwoven as to be tangled into each other. Separating them is like untan-
gling barbed wire: difficult, full of sharp edges, and hard to know where to 
start. The first facet is governance, or who gets access to what. Maintaining 
control over data access and results is not just a good idea, it is codified in 
law, policy, and authorities.26 For example, the health research field bears 
particular examination due to the legal parallels. For health research, it is 
imperative to have clear, accurate data upon which to model outcomes, yet 
for very good reasons, that data must be protected to preserve the privacy of 
individuals despite resulting analytical faults.27 Striking a proper balance in 
a world where organizations can mine tons of personal data is very difficult, 
especially when dealing with small populations (subsets with certain traits, 
diseases, or other issues). The health research field works on this issue by 
creating abstractions, having those who work with the data sign waivers, and 
by having people voluntarily share information.28 In contrast, Silicon Valley 
does not take these steps, which allows it to make enormous gains, excep-
tional products, and tailor make solutions but often also violate privacy.29
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The second facet, classification according to security clearance levels, 
clearly does feed into the governance realm. It not only determines who 
can and cannot see certain types of data and analytical products but also 
requires an important analysis independent from the larger permissions 
discussion. Further, classification issues constantly crop up in conversations 
pertaining to managing access and entry—who has access to what data for 
modeling purposes? As a rule, it is generally easier to move things up the 
classification chain rather than down.30 As such, it is possible to use the 
same sets of data as things go up the classification chain, though additional 
data garnered from classified sources and finished results may be difficult 
to work down. While there is work in this area,31 no solution has yet been 
found to overcome the limitation of seamless access across systems, though 
that may change. Overcoming this hurdle, then, is a matter of creating the 
correct data-flow structure. 

This messy combination of obstacles related to governance forms a single, 
overarching hurdle to the management of a distributed, layered, enterprise 
architecture, which directly affects how data is processed in a standard-
ized format for use by the force and eventually AI algorithms. The way to 
overcome these hurdles, then, is to structure the data in a way to obviate 
the entire issue. As always, form follows function. Some practitioners would 
fall back on the data lake vs. data warehouse dichotomy. In the field of big 
data, there is a rigorous debate as to how big data should be organized, with 
the data lake and data warehouse options being the most often cited para-
digms.32 In a data lake, all of the unstructured data is kept together, there 
is ample access by those who need it, and there is no loss of data no matter 
how many elements draw from the lake. In the data warehouse model, the 
data is structured in a way that is easily accessible and can be delivered to 
those who need it.33 While each of these paradigms is useful within specific 
organizations, because of the hurdles of governance and classification, there 
are problems with each of these paradigms. The data lake cannot overcome 
the issues of the unique governance constraints imposed by special access 
classification issues while the data warehouse comes already structured, 
making it difficult to combine at a higher level with differently structured 
data or with information gathered through separate authorities. Like many 
other central repositories of information, both systems also present a tempt-
ing cyber-attack, sabotage, or espionage target.34
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Current Deficiencies in Military Communication and  
Technology Culture

The previously mentioned steps have all been about building the required 
cultural foundation and technical pillars to support an organization’s lead-
ing-edge elements. All of those steps, from cultivating the right big data cul-
ture to creating the correct enterprise solution, takes a tremendous amount 
of time, effort, and energy. As no organization has all three values simply 
laying around, there comes a perceived tension in allocating very precious 
resources away from current responsibilities. As mentioned above, the cur-
rent operations orientation creates the perception of little room to focus on 
a futures orientation. So how do managers create a proper balance as they 
develop an enterprise solution?

Current Operations versus Futures Orientation
Part of the answer is realizing the false dichotomy of having to trade off 
between current operations and future operations. This is not the case. Like 

the other systems which support joint all-domain 
command and control operations, the proper execu-
tion strategy is to work the big data usage into current 
operations, including iterative deployment coupled 
with rigorous, end-to-end testing and evaluation 
cycles. Implementing practices today and persistently 
employing them day by day on the big data ready 
applications reinforces the culture the organization 
must cultivate in its personnel. With experience and 

diffusion, the culture will begin to transform with the correct values and 
attitudes as a foundation. That is how individuals and organizations build 
the habits which see them through anticipated hard times.35

The other part of the answer is realizing the biggest tradeoff comes in the 
habits, attitudes, and actions of senior leadership.36 This has been discussed 
in oblique terms, from the need to grow the right culture to leaders dem-
onstrating their own failures to support for unorthodox thinkers. However, 
there is a finer point to be made that a leader’s team responds to his actions 
not words.37 Sometimes that is difficult for senior leaders to remember or 
understand—that they are acting in ways that do not jive with their words. 
That dissonance is keenly felt by their teams, and those teams act accordingly. 

Part of the answer 
is realizing the 
false dichotomy of 
having to trade off 
between current 
operations and 
future operations.
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As leaders seek to build the right big data management culture, they at 
times forget to check their own role in the process.38 The onus upon senior 
leaders is greater because of their position and because they are trying to 
drive a change. Dissonance is detected by teams far, far faster than senior 
leaders realize, even if they do not realize there may have been any.39 Exam-
ples of this dissonance range from claiming the aim is to institute a big 
data institutional culture but simply overruling data-driven results based 
on experience; not incorporating the output alongside (or even above) other 
analysis; not giving it the same time, attention, resources, or status as others; 
or not providing a pathway for those in the field to succeed and grow. By 
contrast, when senior leaders act consistently by asking questions, caring 
about the methodology, and requesting more nuanced or detailed informa-
tion, teams respond by working enterprise tools into current operations to 
find those answers, leveraging their culture to find innovative ways forward. 
Over time, this everyday response propels the team forward to the desired 
end state of “future operations.”40

Legacy Platforms and J-Code Structures
Structurally, there are also significant hurdles. How can a cross-functional 
team/big data culture evolve in the context of the current SOF Joint Staff 
culture while simultaneously breaking free from the legacy platforms/tech-
nologies that place data as an enabling function and not the center of opera-
tions? Big data requires cross-functional teams but the J-code creates silos 
of excellence. The mechanics of a fast break from the J-code may be under 
SOF control, but it would certainly be met with skepticism or resistance as it 
goes against the organizational culture of the force. It also would be difficult 
to have people conceptualize the new paradigm. As of now, anyone with 
experience in the military knows what each J-code does and does not do. If 
the military were to evolve beyond the J-code, what would a cross-functional 
team look like? It is obvious to say that form would follow function, but how 
would that actually play out? 

To take an information operations team as an example, it could iteratively 
evolve to maximize output speed, accuracy, and insight. The team’s structure 
could look something like the following: a leader to authorize actions, an 
intel specialist to keep the team informed of fresh intel, a message shaper/
public affairs/influence operations specialist to hit just the right note, a cyber 
delivery specialist to maximize delivery, and a legal/policy point of contact 
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to clear the actions in accordance with existing legal or policy structures. 
Thus, this cell could be authorized to make decisions and push out messaging 
with automated tools and an underlying data structure from which to gather 
information, allowing it to respond quickly and accurately, breaking down 
stovepipes, and streamlining the bureaucratic decision-making processes. 

Models for Adapting the Military for a Big Data Capability

There is still a question as to which management paradigm is best suited for 
inculcating a big data culture. Below are three management paradigms for 
senior leadership consideration in the move to a big data cultural paradigm. 
In the first two, it is a choice between mitigating the burdens or emphasizing 
the strengths from above, while the third explores a radical departure from 
the norm. While each of the models is dependent on which of the previously 
identified constraints can or cannot be changed/accommodated, as form fol-
lows function, they each have their strengths and drawbacks, support victory 
in their own ways, have red flags to avoid, and require multiple commanders 
to cleave to the same vision. 

Cheerleader
The first paradigm, called the cheerleader, is all about support. In this para-
digm, there is no institutional authority mandating a singular path. Instead, 
it relies upon access and placement to motivate followers voluntarily to move 
toward a common objective; in other words, it is a social movement. Before 
applying this to a particular example, it is important to examine the pros and 
cons. The benefits of this paradigm rest in its lack of direct responsibility. 
Without direct responsibility, the organization is able to focus on clearing the 
path for other organizations to press forward by removing obstacles, provid-
ing advocacy, and especially resolving friction. As multiple organizations 
press forward in the same general direction, there is bound to be friction 
between and among them or novel circumstances with which each organiza-
tion must deal within the framework of the overall direction. A strength of 
the cheerleader paradigm, then, is the neutrality with which managers can 
provide clear-eyed advice on contentious issues to fractious institutions since 
they are invested in the process as a whole to get to an overarching objective, 
not a particular project or single pathway. This ability, to remain engaged 
and encouraging yet neutral, may be the greatest strength of this paradigm. 
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As with all things, there are drawbacks to pursuing this management 
culture. First and foremost, without money, expertise, or other resources 
directly applied to the issue, there is little direct 
control over the project. That same neutrality from 
above also removes the organization from the 
direct levers of control, leading it beholden to the 
agendas of others along with their timelines. This 
is often a frustrating experience, requiring a high 
level of trust, commitment, and understanding of 
the other organizations and their processes. 

Empowered Authority
In the next paradigm, empowered authority, there is a high level of institu-
tional authority, but there is also a large reliance on subordinates to execute 
the mission. The pros and cons are almost the exact opposite of the cheer-
leader model. While this paradigm takes far more resources and is another 
responsibility on top of the existing list, it also allows for control over the 
product and the ability to lead the agenda. However, it tends toward a stan-
dardized, fairly rigid implementation scheme, which might be problematic 
for SOF with their numerous component specialties and Service support 
programs. Here the tension between standardization of data for efficient big 
data exploitation and component resourcing comes into clear view. 

One thing to keep in mind is that supporting this paradigm would require 
a massive change in hiring practices, recruiting, and retention of the force. 
It would not be enough to onboard people quickly; it would require them to 
be constantly trained and protected from being poached by other depart-
ments and by private companies. This does create friction with the current 
up-or-out system from the Department of Defense (DOD) as the paradigm 
encourages risk taking with a high chance for failure, builds expertise, and 
aims to increase retention. Having someone stay for ten years at a certain 
level or function is critically important in this paradigm because the exper-
tise and institutional knowledge is not easily replaced or grown. One way 
to meet this objective is to increase use of the chief warrant officer system, 
which allows focused expertise in particular technical areas without the 
same needs demanded by the officer career pathway. 

One way to overcome the issues inherent to either paradigm is to imple-
ment the two management paradigms in conjunction at the levels they 

First and foremost, 
without money, 
expertise, or other 
resources directly 
applied to the issue, 
there is little direct 
control over the 
project. 
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would make most sense. In the SOF context, this would mean a split between 
USSOCOM HQ and the components, but this HQ/component split would be 
of use in any large organization. Keeping to the SOF context as an example, 
USSOCOM HQ takes up the cheerleader paradigm, and the components 
take the empowered authority management paradigm. This would allow for 
USSOCOM HQ to remove the obstacles for the components while allowing 
for decision-making authority to be pushed out to the edge. There would be 
drawbacks, such as the inevitable divergence from the desired standardiza-
tion in approach as the components roll out the implementation. However, 
if there has been investment in an effective big data culture and a true enter-
prise system, then this divergence in approach could be minimized while 
improving the overall ability of the enterprise to ingest and digest its avail-
able data. These two paradigms used in conjunction largely fall under exist-
ing operational capabilities, authorities, and titles, making them generally 
complementary to the current system. However, there is another option not 
to be underestimated for its effectiveness but also not to be pursued lightly 
given its destructive potential. 

Radical Change
The last paradigm is the radical change option, at times dubbed the nuclear 
option. It is a decision to completely break with previous technology plat-
forms despite the significant pain and disruption that would occur in order 
to make a revolutionary leap in capability. One example is Apple moving 
from its traditional Mac computer operating system (OS) in favor of the 
iOS system used on its iPads. In doing so, Apple has wagered that the future 
of its customer base will be working on tablets or similar smart devices. It 
has chosen to eschew updating its laptops in favor of its more mobile prod-
ucts—in contrast to Windows—attempting to bypass the pain and invest-
ment needed to update the Mac OS system.41 If successful, this one change 
would save tremendous resources while placing it ahead of its competitors 
in a valuable market space. If unsuccessful, it will paint Apple into a corner, 
ceding significant ground to Windows. 

The radical change option is best employed when there is a need to change 
the game, forcing the hand of all other competitors. Some paradigmatic 
examples in military history are the introduction of the firearm,42 the carrier 
task force,43 and atomic/nuclear weapons.44 Each case represents a complete 
break in the existing paradigm, leading to a revolution in warfare others 
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could not effectively counter. When thinking about the radical option, there 
are other important questions: When is it appropriate? Why is the orga-
nization undertaking this course of action? What objective is hoped to be 
achieved? How will this unfold? Who is going to lead execution? Is there the 
will to stay the course no matter what? 

Radical change is appealing because it fits within overall American and 
DOD cultural paradigms, making it a tempting option: there is immediate 
action, it is dramatic, a fresh start is appealing to many leaders, it limits any 
bureaucratic stakeholders’ ability to slow momentum, and it is demonstrable 
in briefs. However, it also threatens to destroy the organization’s understand-
ing of valuable lessons learned and resets the clock on any valuable work 
which was underway. Make no mistake, resorting to this option is a gamble 
that carries huge risk, making it imperative to think through the stakes. 

Conclusion

Managing big data requires a supporting culture, not just technical exper-
tise capable of using the technology. Big data culture in many ways runs 
counter to standard military culture, and the mission- and action-oriented 
culture of SOF could lead them to prioritize the current mission over a true 
enterprise solution. By adopting the values and attitudes underpinning big 
data, the SOF enterprise can transform the culture, but it will not likely 
happen for the current fight, and managers should make this an expectation 
as they consider technology and hiring policies. Senior leaders and managers 
will soon need to choose the type of management paradigm to be pursued 
but getting to the point of making that choice effective takes a tremendous 
amount of time, effort, and resources. Inculcating the foundational culture, 
building the enterprise tools, and maintaining cognizance of hurdles to be 
overcome together ensure that once a paradigm is chosen, its full potential 
can be realized. 
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Creating, acquiring, maintaining, and retaining a staff with expertise in 
big data is an ongoing challenge within both commercial industry1 as 

well as the government.2 Doing so in the military and intelligence domains is 
especially challenging given the potential roadblocks of acquiring appropri-
ate security clearances, the (in)ability to offer adequate monetary compensa-
tion, and the opacity of the work to the external world. 

As a result, there is a greater challenge within the Department of Defense 
(DOD) and intelligence community (IC) than in industry to maintain a 
properly skilled and cost-effective data workforce. Government organiza-
tions have turned to creative models of attracting top talent and often rely 
heavily on external organizations (e.g., contractors) to provide the requisite 
talent to handle, manage, and solve big data challenges. Particularly with the 
maturation of government agencies’ understanding of big data challenges, 
there is an increasing focus on big data as a catalyst for mission success and 
an increased emphasis on maintaining an appropriate big data staff.

This chapter discusses several aspects of the challenge and potential 
solutions with establishing or maintaining a big data workforce within 
the military. It also describes opportunities and challenges with recruiting 
experienced employees from non-governmental organizations (e.g., private 
industry) and the aspects of a reliance on contractor support to accomplish 
government missions. 
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Options within the Military

While both industry and the government face challenges with hiring data 
practitioners, the DOD and IC face unique challenges in recruiting and 
maintaining a big data workforce that is not prevalent in private industry. For 
example, security clearances, inability to offer competitive salaries, inabil-
ity to share work outside of closed environments, and location-based work 
all present barriers to hiring data experts. However, the DOD has several 
benefits to draw upon to enhance its ability to recruit and reload a skilled 
data workforce.

Skills and Compensation
Big data specialists were once extremely rare, but with exploding salaries3 
and increasing academic investments in big data programs,4 data scientists 
and data analysts are increasingly entering the workforce. Despite increased 
supply, the demand remains high for data scientists within industry and 
government.5 As a result, even private industry is focused on training the 
existing workforce to fill the gap along with hiring skilled graduates from 
training and traditional degree programs.6 

Big data practitioners are often a rare blend of skillset, mindset, capability, 
and experience in a variety of domains (e.g., programming, statistics, and 
social sciences). Highly sought-after practical skills in a data practitioner 
include the following:

•	 Scientific, scripting programming languages such as Python and R
•	 Experience with cloud and other high-performance computing (e.g., 

Hadoop)
•	 Strong statistics and mathematics background
•	 Big data theory, such as data management, data quality, and wrangling
•	 Knowledge of machine learning algorithms
•	 Data visualization experience
•	 Technical and non-technical communication

Data teams often seek social scientists, such as psychologists or human 
factors engineers, to ensure that data is used effectively and does not intro-
duce bias into decision-making.

Given the specific skillset, along with soft skills such as intellectual curi-
osity and ability to navigate communication between technical and non-
technical communities, data scientists are often able to command salaries in 
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private industry well above typical government salaries. Entry level salaries 
may exceed general schedule (GS)-13 or GS-14 salary ranges. This creates 
a recruiting challenge within DOD and IC stakeholders due to the poten-
tially large discrepancy in monetary compensation for staff members. As a 
result, the government is facing a hiring challenge and must focus on the 
non-monetary benefits and incentives to attract government employees. 
Government organizations are turning to broader organizational training 
(i.e., at all levels from senior leadership down to practitioners) on big data 
practices and skills to augment existing staff with requisite knowledge and 
work to fill the skills gap in the government workforce.7

Along with experts skilled with managing and manipulating data should 
come a variety of skillsets to round out a high-quality data team. These 
team members enable and ensure the appropriate insights or decisions are 
derived from the appropriate data. Additionally, data experts and their team 
members must work to ensure the appropriate caveats are associated with 
data-driven decisions to ensure that the information in data is used in appro-
priate ways. A multidisciplinary team should consist of data management, 
data processing, data architecture, statistics, software, and domain experts. 
A single team member may serve in multiple roles, and a challenge space 
may require varying numbers or varying skill and experience levels of these 
experts. Depending on the domain, other experts may be required, such as 
social scientists, legal experts, or psychologists. 

The goal of a multi-disciplinary data team is to equip the organizational 
team with the relevant domain knowledge to understand how to use the 
data appropriately, determine which assumptions or conditions for use may 
be appropriate, and determine how (i.e., under what conditions) to apply 
the information derived from the data. These aspects of data analysis are 
as—if not more—important than the ability to apply algorithmic analysis 
of datasets.

Recruit Motivations
Government is not unique in its challenge with recruiting data experts. 
Commercial industry has challenges as well. A 2018 study by the National 
Association of Colleges and Employers shows that there are a variety of 
challenges facing organizations hiring data experts8 (e.g., lack of advance-
ment opportunities and lack of suitable tools available in-house to enable job 
function). The study cites that organizations are pursuing internal training 
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and creative compensation packages (among other incentives) to attract the 
appropriately skilled employees.

Despite the monetary compensation, DOD and IC careers have unique 
benefits that can attract talent to government careers. Primarily, big data 
practitioners within the government are often drawn by the mission—the 
opportunities to affect the success of the nation, their fellow citizens, and 
improve the lives of people potentially across the world. The activities being 
performed by individuals in the government are contributions to efforts that 
very literally influence the entire nation and world. The career opportunities 
at U.S. Digital Service and Defense Digital Service (DDS)—and the Silicon 
Valley tycoons9 taking advantage of them10 for less monetary reward than 
in private industry11—are prime examples of top technical experts joining 
government service to contribute to an important mission.12

Data practitioners specifically in the DOD and IC are afforded the respon-
sibility and opportunity to work with datasets and on challenges that very 
few individuals experience. As such, the opportunity to hone skills, under-
stand challenges, and operate on live and important datasets is not available 
in all career paths. This is an additional lure to government work.

The development opportunities available to staff entering the govern-
ment workforce are unique to government service. There are opportunities 
to be immersed in highly diverse and topically broad teams both from the 
perspective of technical topics as well as domain experts. This exposes team 
members to a variety of topics and applications of their domain expertise. 
These opportunities are enhancements to an employee’s resume; even if the 
data practitioner is not destined for a full career in government service, the 
time spent in government positions will provide additional opportunities 
for success in future positions.

Retention and Attrition
The National Geospatial Agency (NGA) Silicon Valley Outpost provides vari-
ous government service positions to assist the NGA in recruiting and poten-
tially maintaining data and other in-demand technical expertise.13 The effort 
is specifically focused on early career contributors but has opportunities for 
other members as well. Some of the careers are intentionally term limited 
(i.e., one- to three-year terms), allowing employees to work remotely or off-
site and return to academia or private industry at the conclusion of their 
term. This incentivizes applications in a similar manner to a post-doctoral 
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position for PhD researchers—contribution to the employer and domain 
during the tenure as well as mentoring peers and gaining technical expertise. 
These positions create learning and culture exchange opportunities for both 
the employee and employer. 

Efforts such as the NGA outpost are being undertaken to improve the 
recruiting efforts to fill the government big data skills gap. However, with 
salaries outside of government being typically larger than is feasible within 
the General Schedule (GS) scales, retaining top talent is an outstanding 
challenge within the government. Adding to this challenge is the often-pro-
hibitive bureaucracy within government proj-
ects. Employees may become frustrated with 
the inability to move at the speed or autonomy 
of industry and opt to leave for a faster-paced 
environment. Again, the NGA outpost and 
other government efforts (e.g., Kessel Run14) 
are challenging those norms and challenging 
government projects to move faster.

As previously discussed, data experts are 
most effective in multi-disciplinary teams. Ide-
ally, a data team gains experience and knowl-
edge of a domain; the data experts become closer to domain experts, as well. 
Data experts must maintain expertise in various approaches and current 
state-of-the-art approaches. As such, a team must balance the need to be 
deeply immersed in a domain with revisiting training on new approaches. 
Opportunities to increase skillsets, maintain training, and increase exposure 
to domain challenges are valuable for data experts. Opportunities to increase 
individual skills and practical applications are appealing to data experts in 
both private industry as well as government. 

To increase retention, creative incentives could be explored. For example, 
technical career paths could be created for individuals that want to remain 
in government service but receive promotion motivation for technical work 
as opposed to a traditional leadership position. In this case, promotion and 
other incentives would be based on technical contributions. For example, 
providing a clearer path to reach a science technical service position would 
help demonstrate a commitment to retaining excellent technical contributors 
in government service. Similarly, the USG and military are experimenting 
with “reskilling” programs to enable existing personnel to learn data science 

However, with salaries 
outside of government 
being typically larger 
than is feasible within 
the General Schedule 
(GS) scales, retaining 
top talent is an outstand-
ing challenge within the 
government.
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skills through certificate programs rather than requiring undergraduate and 
graduate degrees in the field.15

Another opportunity to increase retention is to offer post-service ben-
efits for civil servants. For example, government organizations may explore 
a post-service organization or professional networking group (e.g., Armed 
Forces Communications and Electronics Association16) that is limited to 
those that served a minimum amount of time in government positions. This 
would encourage engagement within the community, demonstrate the value 
of government service, and enhance the non-monetary benefits of govern-
ment employees. Similarly, continuous training through these organizations 
could be offered as a way to retain skill sets and knowledge exchanges simi-
lar to the models used by volunteer firefighters (i.e., professional training 
opportunities) or the Illuminate Thinkshop17 (i.e., peer training exchanges).

Recruiting from the Civilian Sector

The demand for data scientists is not unique to the government. Private 
sector companies are striving to acquire highly sought-after data talent. 
Smaller companies are unable to compete with the salaries of the larger, 
perennial powers in the tech landscape. As a result, they use techniques such 
as incentive packages, training programs, and exchange programs (e.g., with 
government) to enhance the appeal and improve recruiting. 

Skills and Compensation
Entering government service from the private sector is appealing when con-
sidering the opportunities and mission. However, government can improve 
its ability to recruit using similarly creative incentive packages. For example, 
DDS uses a “straight to GS-15” program which places top technical talent at 
the top of the GS pay and responsibility scale. This can be an opportunity for 
individuals to gain valuable experience and interact at high levels of govern-
ment. The program has been successful at attracting otherwise unobtainable 
talent from Silicon Valley startups.

Training incentives within the government can help attract talent. For 
example, education programs or partnerships with organizations in aca-
demia or industry can help enhance the skill sets of potential candidates. 
Training for software engineers within the Air Force’s iLab effort in the 
548th Intelligence, Surveillance, and Reconnaissance Group18 and Kessel 
Run19 are examples of government partnerships with industry for training.



97

Ellis/Grzegorzewski eds.: Big Data for Generals 

Recruit Motivations
Civilian data scientists in general are puzzle solvers and innovators, and they 
like to have a high degree of input in any discovery process. As with most 
creative minds, they like flexible work schedules and the ability to surge 
when inspiration hits. As long as the problem or challenge they are work-
ing on is meaningful, they will retain interest in the work. That said, it is 
common for civilian data scientists to stay with a job for only three years or 
less as their interests adapt along with changing personal and technological 
circumstances.20

Retention and Attrition
Motivating experienced civilian personnel to stay will likely be a function 
of multiple factors. First, without leadership who understand and accom-
modate the data scientist culture, civilians will quickly become frustrated 
and leave for more interesting work. Second, without the right tools, civil-
ian data scientists will feel underutilized and 
unproductive. Here again, government pur-
chasing protocols and security requirements 
could become a source of frustration unless 
expectations are clearly managed on the front 
end of the hiring process. Third, data scientists 
are highly sensitive to the rapid pace of technological change. A position 
that prevents them from maintaining currency or working with the latest 
technology could cause serious harm to their future careers. As a result, they 
will need the ability to stay current either through their jobs or dedicated 
time for continuous learning.21

Contractor Support

Because of the highly competitive hiring and recruiting environment around 
big data practitioners, the government often relies on contractor support to 
supply big data expertise. In many ways, this is beneficial to all parties: the 
government is able to immediately acquire the skillsets required without 
investing in training and education that takes time to achieve a return on 
investment, and the employees may be potentially paid at a higher rate than 
possible within government. However, this may lead to a gap in institu-
tional knowledge and an inability to operate in all capacities. For example, 

Motivating experienced 
civilian personnel to stay 
will likely be a function 
of multiple factors.
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contractors may not be suitable for highly sensitive tasks or may not be able 
to access data of particular sensitivities, leaving the responsibility for pro-
cessing these edge cases with the government employees.

Contractor support and employee tenure are not guaranteed, especially 
during times of fiscal constraint. Therefore, there is a risk of losing institu-
tional knowledge or domain expertise if a structured hand off is not planned 
for when the contract is let. Despite this, contractor support is essential to 
augmenting the government data workforce until billets become available 
for military or civilian positions. 

Conclusion and Recommendations

As the government moves toward adopting big data and continuing to lever-
age it as a catalyst for mission success, it is essential for the government to 
identify a reliable path for staffing big data efforts. Organizations are begin-
ning to explore creative incentives and recruiting mechanisms. Despite the 
benefits of working in the government data domain (e.g., access to data, 
training, and experience), the government remains commonly challenged 
by bureaucracy and less lucrative salaries when compared to industry.

The government should focus on immersing their data experts in multi-
disciplinary teams and providing training options. Working in the govern-
ment should be a career boost and create open opportunities for candidates. 
Creative incentives can help enhance the appeal of working with govern-
ment. For example, creating explicit career paths for technical experts, ten-
ure-based incentives for civil servants, training and mentoring programs, 
and post-service benefits should all be explored for feasibility in attracting 
top talent. Properly incentivized, trained, and equipped (including with 
appropriate team members), a data expert can help make the best use of 
the data within an organization. Government hiring organizations should 
work to leverage their strengths to attract the top talent available. Despite 
the challenges, government missions—the ability to affect the globe and 
improve the lives of fellow citizens—remains a prime driver for technical 
leaders to join government service. 
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Chapter 6. Why Silicon Valley Is a Poorly 
Suited Model for Special Operations 
Forces

Dr. Mark Grzegorzewski

The reason that “guru” is such a popular word is because “charlatan” 
is so hard to spell. – William J. Bernstein

Organizational Change

Given its proficiency with big data, could the organizational culture of 
Special Operations Forces (SOF) adopt the so-called Silicon Valley 

model? As the above quote indicates, many companies bring in outsiders 
(gurus) to fix what is wrong in their organization.1 Their fixes may appear to 
work initially, but in reality what the organization is experiencing is a small 
change to the existing system rather than a complete organizational over-
haul. Over time, the change that is introduced becomes less effective as the 
system reverts to the mean and the guru’s one-size-fits-all change program 
does not take.2 Why is this the case? What is it about organizational culture 
that makes it resistant to change? For that matter, what is organizational 
culture, and how does it impact innovation? In the following sections, this 
chapter will tackle these questions and explain four barriers to SOF adopting 
the Silicon Valley model. These barriers include the entrenched functional 
organizational culture of SOF, their inability to capture the zeitgeist of Silicon 
Valley, the fact that they draw upon closed-system concepts while operating 
in a dynamic environment, and that they lack the freedom to innovate to 
the degree that Silicon Valley enjoys.

Organizational culture is defined in a number of ways, but there are some 
common elements to culture in general:

•	 Some combination of artifacts (also called practices, expressive sym-
bols, or forms), values and beliefs, and underlying assumptions that 
organizational members share about appropriate behavior3
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•	 Patterns of meaning that weave human experience together into a 
coherent whole4

•	 A body of solutions to problems which have worked consistently and 
are therefore taught to new members as the correct way to perceive, 
think about, and feel in relation to those problems5

Some definitions for organizational culture that try to capture these ideas 
include:

•	 Holistic, historically determined, and socially constructed beliefs and 
behavior existing at a variety of levels and manifesting in a wide range 
of features of organizational life6

•	 A complex set of values, beliefs, assumptions, and symbols that define 
the way in which a firm conducts its business7

•	 Shared common values and beliefs that guide organizational members’ 
actions by providing a perception of goal congruence and by helping 
employees to determine what is in the best interest of the collective8 

Having a common organizational culture, however defined, is important 
for several reasons, such as the need to convey a sense of identity for organi-
zational members, facilitating the generation of commitment to something 
bigger than oneself, enhancing social system stability, and serving as a sense-
making device to guide and shape behavior.9 How the operational culture 
is conceptualized will determine the rules followed either consciously or 
subconsciously. For instance, if the organizational culture is viewed only in 
terms of ideational and symbolic aspects, it will be difficult to discover the 
deeper meanings within the unconscious mind. These surface level analyses 
will not lead employers to guide their decisions when hiring the right people, 
strategizing, or changing the organization.10

The Silicon Valley Model

Despite exhortations from senior leaders to adapt to the Silicon Valley model, 
there is no clear conception within the literature of what this model actually 
entails. Therefore, this model may in fact be more of a frame of mind than 
an explicit representation. In interviews with cyberspace, artificial intelli-
gence, and emerging technology companies based in Austin, Texas, several 
different commonalities about the concept of the Silicon Valley model were 
revealed. Homa Bahrami and Stuart Evans (2011) describe Silicon Valley as 
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an “ecosystem that can be best described as Khunian inversion—long peri-
ods of frenzied change punctuated briefly by stable interludes. Technologies, 
products, markets, and competitors are in a state of flux.”11 The authors also 
describe the need of Silicon Valley modeled companies to be “super flexible,” 
meaning the “dialectical capacity of withstanding while transforming.”12 
To achieve this super flexibility, the authors argue that organizations must 
achieve five interlocking principles:

•	 Strategizing by maneuvering, which entails developing a variable port-
folio of initiatives—encompassing pre-emptive, protective, opportu-
nistic, and corrective maneuvers—and changing gear between them 
on a real-time basis

•	 Executing by experimenting, prototyping, iterating, and recalibrating 
assumptions, initiatives, and actions as new realities unfold

•	 Organizing by setting up a distributed, multipolar nodal architecture 
and clarifying federal rules of engagement

•	 Leading by aligning and realigning knowledge workers around 
dynamic realities and by redeploying peer-to-peer practices

•	 Innovating by recycling know-how, talent, and failures in a multipolar 
ecosystem13

The Silicon Valley model also encompasses a fluid labor market in which 
workers are given freedom from the employer. Conversely, there is not an 
expectation that the employer is responsible for the development of the 
employee. The employee is expected to take the initiative and constantly 
improve his or her marketability.14 Further, the employee is given freedom 
from the employer on how to realize a project. It only matters that the project 
is completed on time.15 This freedom to explore different ways in which to 
achieve the objective in turn leads to innovation within the organization. 
However, this same freedom can also lead to burnout amongst workers as 
they have no defined time when the workday ends, and therefore their job 
becomes their life.16 

Another aspect that defines the Silicon Valley model is its insistence 
on radical innovation rather than incremental innovation.17 However, this 
insistence on radical innovation is more easily said than done. In order for 
an organization to be as innovatively successful as Silicon Valley, it must be 
supported by the same ecosystem in which Silicon Valley thrives. To be clear, 
the Silicon Valley model is only successful due to the copious amounts of 
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government and corporate money spent on innovation plus the location of 
Silicon Valley right next to Stanford University.18 Henry Etkowitz describes 
this as the “triple helix format,” where each helix is only as successful as the 
other helixes.19 

Amongst interviewees for this project, there was a common theme that 
a Silicon Valley-based system is flexible and willing to bring in the right 
talent to make the change that the organization needs. By bringing in digital 
natives, companies bring in a fresh perspective to look at old problems. These 
employees will fail, perhaps multiple times, but it is important for employers 
to not get upset at an employee but rather to acknowledge that a new path 
forward was attempted, it failed, and that the organization learned from it. 
Respondents also added comments like, “failure is 99 percent of the process,” 
and “adopt failure as an expectation.”

In the test-and-learn culture that makes up part of the Silicon Valley 
model, interviewees held some version of the belief that their organizations 
have adopted failure as part of the business model. That is to say, if an orga-
nization is not failing, they are not being innovative and taking on risk to 
improve the product. One respondent did give a more nuanced view on 
failure by dividing his organization into the software and hardware divi-
sions in which the former does not get instant feedback since it engineers a 
product which takes many months to complete and test. The latter, however, 
gets instantaneous feedback due to the nature of the work. Despite these dif-
ferences, this individual did think that both divisions need to have people 
who can overcome setbacks.

In order to set loose independent teams that make agile Silicon Valley 
organizations hum, respondents were largely in agreement that as long as 
managers set clear guidance for their employees, they should have faith 
that the objective will be achieved. That is not to say that managers should 
only check in periodically; rather, as one interviewee remarked, they should 
“trust but verify.” Moreover, managers should give periodic guidance to 
facilitate the actions of their employees. By not micromanaging their employ-
ees, managers allow them to innovate and get to the objective in previously 
unforeseen ways.

In agile organizations, which are typically associated with the Silicon 
Valley model, there is not a great need for managers so long as the values 
of the organization are clearly articulated and accepted by the employees. 
Moreover, because these organizations only hire people that are a fit for the 
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organization, managers do not have a trust deficit that their employees are 
accomplishing the mission. Therefore, the organization becomes a mix of 
flatness and hierarchy wherein there are managers at the top to articulate the 
company’s vision, but peer-to-peer management self-polices implementation 
in case something goes wrong. Within the peer-to-peer management level, 
it is important to have someone who can push information up the manage-
ment chain in the event that challenges cannot be solved at the worker level.

According to respondents, leaders and managers in agile organizations 
should focus on the overall long-term strategy of the company and not the 
day-to-day minutiae. When they are compelled to involve themselves in day-
to-day work, it is important that they focus on finding solutions to problems 
and not expending the majority of their energy on placing blame. In fact, it 
is recommended that managers shield their employees from the blame and 
focus on removing any barriers to their employees’ success. By protecting 
them, the employee in an agile organization is allowed to focus on innovat-
ing solutions while avoiding what would otherwise become high stress and 
mentally and physically draining undertakings.

Interview participants were split as to whether it is better to focus on a 
data-driven culture or a culture built around a data model. Those who saw 
the problem in terms of data noted that there are tons of data available to sift 
through. For the group that saw a model as being more important than the 
abundance of data available, it was noted that it does not matter how much 
data there is unless there is also a concept about how the data is going to be 
used. Individuals went on to state that having too much data can actually 
constrain an organization if it does not have the ability to store it. Rather, 
they argue having a model up front is important for determining the data 
needed, and, as a result, avoids trying to collect everything, which is a strain 
on resources. Participants noted that, in both data-driven and model-driven 
cultures, it is important to articulate to the employees how the parts of the 
system fit together, and that every employee should know his or her indi-
vidual role within the system and how he or she contributes to the overall 
success of the organization.

Silicon Valley companies build their cultures around transparency and 
the proper alignment of resources. In such an organization, everyone is 
responsible for calling out small problems before they turn into large messes. 
At this level, each employee has a different perspective within the company, 
and when amalgamated, these perceptions can give leadership a holistic view 
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of the company. By taking in the feedback from multiple vantage points, the 
business becomes a learning organization. Therefore, according to respon-
dents, it is important to emphasize the importance of a feedback loop within 
the Silicon Valley model.

Finally, employee freedom was an important topic to the interviewees. 
Each emphasized the importance of freedom being baked into the organiza-
tional culture. They also emphasized that there are always multiple ways to 
achieve an objective, so management should not force a one-size-fits-all strat-
egy. If the right people for an organization are found, defined as a cultural fit, 
constant supervision is not necessary. In a somewhat radical remark from an 

interviewee, it was stated that he hired a top-notch 
individual to work for his company knowing full 
well that he or she would complete a project ahead 
of schedule. The manager also knew that the indi-
vidual would spend the rest of his time working on 
a side project. This did not bother the manager since 
the job was completed and since the highly skilled 
worker would add value to the company in other 

ways outside of the project. The moral here is that employers should only 
focus on whether the job gets done on time, not how it was accomplished.

While the literature is sparse on what comprises the Silicon Valley model, 
the interviews conducted provided some more insights into how people 
within the tech industry view the model that governs their work activity. 
They focused on the test-and-learn culture, independent teams and agile 
organizations, management structures and transparency, and the debate 
between data-driven and model-driven cultures. Surely there are other 
aspects to the Silicon Valley model, but these insights provide a sufficient 
baseline against which to compare the organizational culture of SOF and 
whether they can adapt to becoming more like Silicon Valley.

Barriers to Special Operations Forces Adopting the Silicon 
Valley Model

The Entrenched Functional Organizational Culture of Special 
Operations Forces
Every organizational culture has values that guide it. As discussed by Yoash 
Wiener, these values generally take two forms: functional and elitist.20 These 
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are also identified as the negative (functional) and positive (elitist) forces of 
organizational culture.21 Functional values address the modes of conduct of 
organizational members whereas elitist values speak to the status, superi-
ority, and importance of the organization.22 Put another way, functionalist 
values guide behaviors through explicit rules while elitist values channel 
the pride within the organization to achieve an end state. These values are 
not mutually exclusive, and both can likely be found in organizations. These 
values often start with an original charismatic leader within the organiza-
tion or the founder. 

For example, within the SOF community, the original leader that shaped 
the organization as we know it today could be considered General William 
Donovan or even the service members involved in Operation Eagle Claw. 
These leaders instilled in the organization a sense that every mission is “no 
fail” (elitist) and that SOF gets its mission completed by doing whatever is 
necessary (functional). These same value characteristics can be found in Sili-
con Valley organizations. For example, Facebook’s founding member, Mark 
Zuckerberg, has instilled in his organization five core values that guide their 
work (functional).23 In addition, Mark Zuckerberg also has the charismatic 
value of “move fast and break things” (elitist).24 Functional values are longer 
lasting and harder to change than elitist values since the former begets an 
imbedded behavior.25 

These functionalist values can encourage or discourage dissent within 
an organization, thereby guiding employee behavior.26 Scholars have noted 
the importance of having divergent points of view within an organization 
and the ability for information to flow up to senior leaders.27 When orga-
nizational silence is part of the culture, lower-level employees fear telling 
management about problems. This climate of silence works to the detriment 

Four Barriers to SOF Adopting the Silicon Valley Model:

1.	 The entrenched functional organizational culture of SOF

2.	 Inability to capture the zeitgeist of Silicon Valley

3.	 A closed system operating in a dynamic environment

4.	 Lacking freedom to innovate 
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of organizations.28 Management may perpetuate this unhealthy climate for 
several reasons. One such reason is that management views it as an attack on 
their power and credibility.29 In fact, the more homogenous senior leadership 
is, the more likely leaders are to remain cohesive against the perceived threat 
of dissent.30 They also may dismiss information from below since they believe 
employees are self-interested and untrustworthy.31 A final reason is that orga-
nizations may view dissent as unhealthy and therefore encourage a culture 
of uniformity and consensus.32 When compared against the characteristics 
of the Silicon Valley model, these stifling functionalist values would never 
be found in a successful technology company. However, some of the charac-
teristics are found in the military, and, indeed, are part of military culture.

In addition, the flatness of an organization, which is determined by 
both its functional and elitist values, impacts the information flow within 
an organization. In hierarchical organizations, creativity is stifled in that 
information flows mainly from the top down. In these tiered organizations, 
innovation is not seen as an end in itself but rather a means to an end.33 In 
the Silicon Valley model, innovation is an end itself and organizations are 
generally flat. In fact, one organization, Zappos, eliminated all managers 
and hierarchy.34 To be clear, Zappos over the past few years has backed away 
from this “holacracy” and started to return to slightly stronger hierarchy, but 
it still demonstrates a potential, if not radical, conception around which an 
organization can be organized. Surprising no one, the military could never 
implement a flat organizational system. The military’s relatively rigid infor-
mation and decision-making flows run counter to the Silicon Valley model 
in which information flows in all directions. In fact, extensive research has 
shown that when information flows in multiple ways, it improves the quality 
of the organization’s decision-making.35 Therefore, the first barrier to SOF 
adapting the Silicon Valley model is that for over 30 years, the SOF commu-
nity—even longer in the context of larger military culture—has done things 
a certain way. In order to change its functionalist way of doing things, SOF 
requires a leader to adopt wholesale the mindset of Silicon Valley leaders. 

Inability to Capture the Zeitgeist of Silicon Valley
Even if a charismatic leader does take leadership over the SOF commu-
nity, it does not guarantee that the shift to the Silicon Valley model can be 
accomplished. Replicating successful organizational cultures is difficult. 
This explains why not all organizations have shifted to the Silicon Valley 
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model. Certainly, other firms have wanted and tried to replicate the model. 
However, their failures demonstrate that certain organizational cultures are 
not perfectly imitable.36 A firm that has “a valuable, rare, and imperfectly 
imitable culture enjoys a sustained competitive advantage that reflects that 
culture.”37 As such, just as SOF would like to emulate the Silicon Valley 
model, it will be unable to perfectly emulate a culture that has a sustained 
competitive advantage over its rivals. This is due to Silicon Valley having 
that “triple helix” quality that cannot be perfectly described and therefore 
cannot be perfectly imitated.38 This inability to capture the zeitgeist (spirit 
or mood) of Silicon Valley is perhaps the biggest barrier to emulation for 
SOF. Instead, SOF should focus on emulating a successful culture within its 
industry rather than try to imitate a foreign organizational culture. Research 
demonstrates that firms that adopt organizational changes from within their 
industry are more successful than those industries that adopt changes from 
outside of their industry. This is mainly due to the adopting organization’s 
ability to identity the correct cultural characteristics that they want to emu-
late.39 In the case of SOF, it may better for U.S. Special Operations Command 
(USSOCOM) to adopt the Joint Artificial Intelligence Center’s organizational 
culture as opposed to the nebulous Silicon Valley culture, though problems 
with scalability would have to be addressed.

Lacking the Freedom to Innovate 
What motivates human beings within organizations to act? This philosophi-
cal question is tied to the conception of freedom.40 Do organizations need 
paternalistic office structures to manage people at all times? Undoubtedly, 
workers do not prefer to work in places where they are constantly supervised 
and given only one way in which to achieve a task. This view is validated 
in the literature in that workers are more productive when they are part of 
an environment in which they do not have to be coerced to do their job; 
equally, they are likely to show less motivation when they have no control 
over an organization’s processes and systems.41 This view is amplified with 
the finding that individuals are more than willing to give up their freedom 
to an organization if they perceive that their values align with the organiza-
tion’s, thereby leading individuals and organizations to superior outcomes.42 

The other side of organizational innovation is determining how much 
risk an organization is willing to take when giving employees the freedom 
to innovate.43 Too much uncertainty within an organization, revealed as too 
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much input from employees, can overload the organization and paralyze its 
decision-making process.44 However, if the amount of input into the orga-
nization is precisely calibrated and appropriate risk assumed, employees 
will be free to deviate from the established cultural norms and innovate.45 
If risk taking is not baked into the organizational culture, workers will feel 
that any innovation that is not successful will be punished. Such an organi-
zational culture is certainly not conducive to innovation and will leave the 
organizational system static as the external environment changes around it.46 

Research on innovation has also taken issue with organizations that call 
for no failure. The critique of no-fail cultures is that such organizations 
do not fail because they do not take real risks. Annika Steiber and Sverker 
Alainge argue that organizations should take on riskier missions and fail. 
As such, the true mark of innovation is failing early on and learning from 
that failure.47 Tom Peters recommends that management “better be trying 
stuff at an insanely rapid pace. You want to be screwing around with nearly 
everything.”48 Harry Boer and Frank Gertsen take the argument a step fur-
ther and argue that organizations should strive for continuous innovation, 
which consists of “continuous improvement, learning and innovation, and 
implying an effective ongoing interaction between incremental improvement 
and learning and more radical innovation and change.”49

A Closed System in a Dynamic Environment
The environment around an organization is constantly changing, meaning 
the organizational culture may be outpaced by the environment.50 Only by 
continuously sensing the environment and enacting continuous learning 
do cultures such as those in Silicon Valley adapt their own organizational 
culture to the surrounding dynamic environment.51 Rather than waiting 
until it is too late and the organization becomes obsolete due to the chang-
ing environment, it is recommended that leaders should implement the most 
effective cultural change in a semi-incremental approach in which they 
keep their organization stable and then implement “revolutionary periods 
of change.”52 Moreover, change leaders need to take into consideration the 
ways in which their employees might perceive the change, make sure the 
employees are ready for the change, and have the employees be an active part 
of that change.53 If not enacted carefully, organizational change can result 
in a loss of external legitimacy for the organization as well as a questioning 
of the organization’s internal identity.54 That said, successful organization 
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change cannot be implemented haphazardly. Rather, there must a detailed 
plan on how the change will be implemented and an expectation that the 
change may not happen quickly.55

Part of the reason Google, a typical Silicon Valley organization in an open 
system, is so successful is that it chooses the right people to succeed within 
their organizational culture. For example, Google’s founders, Sergey Brin 
and Larry Page, cultivated a culture around three values: “do no evil, have 
a large impact, and change the world.”56 Moreover, Brin and Page wanted to 
create a culture in which employees would feel that they are working for one 
of the best companies in the world. By centering their workforce on these 
values, it allows Google to constantly change with the environment around it. 

Further, to match employees that fit the Google culture, it starts with 
human resources. To test whether individuals are a match, interviewees are 
asked questions on four pre-defined areas: “cognitive ability, role-related 
knowledge, leadership, and ‘Googliness.’”57 The last area is a test between the 
individual and Google to see whether the individual is a cultural fit.

When a person is determined to be a good fit for Google and comes on 
board with the company, leaders within Google empower the individual 
to make change within the organization. Leaders provide this freedom to 
innovate by placing wide parameters on how a project can be completed and 
removing bureaucratic obstacles to change.58 That is to say, Google’s leaders 
lead by getting out of the way and trusting that their employees do not need 
constant supervision. Once inside the organization, Google employees form 
connections with others and share as much as possible, even across depart-
ments, with the aim that sharing meets their individual goals.59 This process 
of sharing at the individual level helps the overall organization in that it can 
achieve innovation and efficiencies through the new synergies that occur. 
These dynamic and unpredictable synergies are best characterized by Steve 
Jobs when he said, “… creativity comes from spontaneous meetings, from 
random discussions. You run into someone, you will ask what they’re doing, 
you say ‘Wow,’ and soon you’re cooking up all sorts of ideas.”60

How Special Operations Forces Can Learn From but Not 
Become Silicon Valley

The barriers outlined in this chapter (the entrenched functional organi-
zational culture of SOF, inability to capture the zeitgeist of Silicon Valley, 
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lacking freedom to innovate, and a closed system operating in a dynamic 
environment) will not likely be overcome by SOF. The gulf between the Sili-

con Valley model and SOF is simply too large. 
The values within the special operations com-
munity are too entrenched. However, that does 
not mean the SOF community cannot learn 
from the Silicon Valley model. Below are three 
takeaways flowing from the discussion above 

that the SOF community can apply today to move them closer to the Silicon 
Valley culture and processes:

1.	 Do not try to be Silicon Valley. SOF is SOF, and that is okay. SOF will 
never be the most efficient organization but it can remain the most 
effective. That does not mean that it could not stand to change some 
of the ways in which it manages data and technology. For one, SOF 
leaders could delegate more freedom to employees, allowing them 
different ways to achieve an objective. As long as it is not immoral 
or illegal, SOF leaders could incentivize information sharing across 
directorates and encourage problem solving at lower levels. As part of 
that, SOF leaders and managers would need room to fail on admin-
istrative and analytical activities. Agile organizations stay current by 
aggregating small innovations that add up and make the organization 
more efficient over time.

2.	 Break down silos between J-codes and components and inform people 
how they fit into the larger whole. Within USSOCOM, between J-codes, 
and across components, individuals have little understanding of what 
others do on a daily basis. As noted in chapter three, big data in par-
ticular requires cross-functional teams that transcend the J-code 
structure. Give the participants a problem to solve and wide latitude 
to arrive at a solution. Have managers provide top cover to these small 
teams as they innovate. In addition to coming up with a solution (or 
failing, which is okay), these individuals will learn about one another’s 
departments or Components. In turn, they will see the organization 
from a new perspective and more clearly understand their role within it.

3.	 Figure out the purpose of the data before starting collection on every-
thing. A model-driven approach to big data will guide what data is 

The values within the 
special operations 
community are too 
entrenched.
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Chapter 7. Ethics and Big Data 

Dr. Bohyun Kim

Ethical Questions Raised by Military Robots

Artificial intelligence (AI) is a research area where its military application is 
being actively pursued. On 12 February 2019, the U.S. Department of Defense 
released a summary and supplementary fact sheet of its AI strategy.1 AI is 
used to generate intelligence from analyzing data in satellite imagery, ter-
rain information, and data from multiple sensors by applying deep learning, 
statistical analysis, and probabilistic algorithms to such data. AI can also be 
used for designing targeted missiles, sophisticated weapons, and technology-
intensive fighter planes.2 

Many predict that developments in AI will lead to highly autonomous 
weapons. This trend is already seen in unmanned aerial vehicles (UAVs) and 
other military robots. UAVs such as the MQ-1 Predator, MQ-9 Reaper, and 
RQ-4 Global Hawk can track and/or attack targets from the air with laser-
guided bombs. These UAVs are embodied and situated in the world, take 
sensory input from the environment, process it, and take action based upon 
the input and the rules in their programs (strike functions retain a human 
in the loop). For these reasons, they are often referred to as a “robot.”3 They 
are also cited as examples of what AI researchers call “an intelligent agent.”

There are many different types of military robots. Some identify and dis-
pose explosive devices. Others perform scouting tasks. Some military sentry 
robots are capable of automatic targeting and shooting. Automated defense 
systems, such as the Goalkeeper close-in weapon system and Aegis, protect 
military ships by automatically surveilling, detecting, and destroying incom-
ing threats. Many military robots are remotely controlled by human opera-
tors. But some of them are capable in theory (if not practice) of engaging in 
military actions without the human operator being involved in the process. 

Military robots have human benefits. They can significantly reduce the 
risk to soldiers in a military operation and even save their lives. Powered by 
sophisticated AI technology, capable military robots are likely to keep mili-
tary personnel away from the battlefield and even replace them in the near 
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future. Military drones, UAVs, and other robots functioning independently 
without a human operator having to determine and authorize each and every 
decision and action would bring vast savings in efficiency and cost. This is 
one of the reasons why military robots will become more autonomous and 
independent. The U.S. military considers robots to be a great asset. The 
Pentagon’s spending on UAVs increased from approximately $300 million 
in the 1990s to $2 billion in 2005 and over $6 billion by 2011.4 

However, autonomous military robots raise new and unsettling ethical 
questions. For example, a sentry robot cannot tell whether those crossing 
the border are unarmed civilians or enemy soldiers. Should the robot fire at 
those people? What happens if it turned out that those killed were unarmed 
civilians? Whether a military robot is to be given the authority to make 
its own decision or not is a controversial topic. If a military robot makes a 
mistake, who should be responsible for the mistake: a robot manufacturer 
that built the robot, engineers and computer programmers who designed 
and programmed the robot, the commander who deployed the robot, the 
soldier who was supposed to monitor the robot, or the robot itself? 

One may believe that these are all merely theoretical questions. But with 
today’s rapidly advancing AI technology and strong interests in its military 
use, these questions may become real issues that require a solution much 
sooner. That the U.S. is already planning to incorporate AI into its cyber 
defense systems is one indication of this.5 Ethics is a discipline from which 
many seek insight in these matters. It is important to take a look at what 
moral philosophy has to offer regarding the morality of AI agents such as 
military robots. 

The Trolley Problem

The trolley problem is a philosophical puzzle first introduced by Philippa 
Foot in 1967.6 The recent development in a self-driving car brought new 
spotlight to this old philosophical problem. A runaway trolley barrels down 
a track where five unsuspecting people are standing. A bystander happens to 
be standing next to the lever that switches the trolley onto a different track 
when pulled. The other track, however, is not clear either. There is one person 
on it. Those who are on the either track will be killed if the trolley heads 
down that way. Should the bystander pull the lever to change the track for 
the trolley so that it would kill one person rather than five people? 
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Needless to say, in real life there will be little time for any deliberation. If 
one does not freeze and acts at all, it is likely to be more from a reflex than a 
conscious decision. With the autonomous car, however, the trolley problem 
becomes a matter of programming—a required decision-making process in 
advance. A machine can act much more quickly than a person. It will not 
panic or hesitate. It will simply follow and execute the given instruction. The 
engineers of an autonomous trolley now have an opportunity to program a 
moral action if an unfortunate case such as the trolley problem materializes. 
The question remains, however, should one act to make the autonomous 
trolley swerve or leave it to stay on course? 

Moral philosophers have been discussing the trolley problem for a long 
time, and different moral theories take different positions. Utilitarianism, for 
example, argues that the utility of an action is what makes an action moral. 
That is, what generates the greatest amount of good is the most moral thing 
to do. Since five human lives are a greater good than one, one acts morally 
by pulling the lever and diverting the trolley to the other track. By contrast, 
deontology claims that what determines whether an action is morally right 
or wrong is not its utility but moral rules. If an action is in accordance with 
the rules of morality, the action is morally right. Otherwise, it is morally 
wrong. That one is not to kill another human being is one of those rules. 
Therefore, killing someone violates the rule and is morally wrong under all 
circumstances, including one in which it may result in saving more lives. 

It appears that the utilitarian and the deontological position both appeal 
to and go against U.S. moral intuition in different aspects. On one hand, if 
a trolley cannot be stopped, is it not clearly better to choose saving five lives 
rather than only one? On the other hand, if killing people is wrong in the 
first place, how can one justify sacrificing someone’s life even if it is to save 
five people? Isn’t killing morally wrong no matter what? 

At first glance, utilitarianism looks promising. But consider the case in 
which the bystander in the trolley case freezes and does nothing, thereby kill-
ing five people. Has the bystander committed 
a moral wrong? Originally, the question was 
whether one ought to switch the track of the 
runaway trolley or not. Now, a different but 
no less challenging question arises. Is a moral failure equivalent to a moral 
wrong? Suppose that one ought to act to maximize the greatest good. But 
how far should one go for that goal? For example, if one can lift up and throw 

Isn’t killing morally wrong 
no matter what?
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a really large person onto the track to stop the trolley from running over 
the five men standing on the track, is this solution as morally permissible 
as pulling the lever since the result is the same as the loss of one human 
life?7 Utilitarianism would count the outcome to be the same. But nearly no 
one—including those who argue that one should pull the lever to divert the 
trolley—would say that throwing a person onto the track to stop the trolley 
is a morally permissible act. 

The problem with utilitarianism is that it treats the good as something 
inherently quantifiable, comparable, calculable, and additive. But not all con-
siderations that people must factor into moral decision-making share those 
traits. What if the five people on the track are helpless babies or murderers 
who just escaped from prison? Would or should that affect our decision? For 
this reason, the utilitarian position is not necessarily the most persuasive 
view. 

Deontology does not fare too well, either. Deontology emphasizes one’s 
duty to observe moral rules. But what if those moral rules conflict with one 
another? Between not killing a person and saving lives, which one should 
trump the other? Conflict of values is common in life. Given this, deontology 
will have just as hard a time as utilitarianism in deciding what an intelligent 
agent is to do in a tricky situation such as the trolley problem. 

Artificial Intelligence in a War and Its Moral Risk

Philosophical discussion around the trolley problem is likely to disappoint 
those looking for practical guidelines and solutions. Suppose that some engi-
neers program an autonomous unmanned vehicle in a battlefield to always 
choose to do whatever maximizes the chances of victory, interpreting that 
as the utility in utilitarianism. That may include decisions such as sacrific-
ing a great number of civilians when it can be avoided, which many would 
consider morally wrong. Now imagine that other engineers program the 
vehicle to act to minimize the number of casualties at all costs. This will not 
be always strategically beneficial to win a war. 

If the engineers ask military commanders what to do, what should they 
choose? While these are certainly unrealistic simplifications, it is clear that 
moral philosophy does not provide an easy answer. However, this should not 
lead anyone to dismiss ethical issues related to AI-powered military robots. 
AI-powered military robots are not just another kind of weapon. When 
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widely deployed, they can change the nature of war. Below are some of the 
prominent ethical issues that autonomous military robots present. 

a.	 There are already many remote-operated weapons, but AI-powered 
military robots go one step further. They can identify a target and initi-
ate an attack on their own. Due to their autonomy, military robots can 
significantly increase the distance between one who decides and acts 
to kill and the other who gets killed.8 This increase, however, may lead 
one to surrender one’s own moral responsibility to a machine resulting 
in the loss of humanity in a war, and this is a serious moral risk.9 The 
more autonomous military robots become, the less responsibility for 
taking life-and-death decisions comes to rest with humans. 

b.	 Furthermore, as military robots make killing easier, small conflicts 
may more quickly escalate to war. The side that deploys AI-powered 
military robots is likely to suffer many fewer casualties for itself while 
inflicting many more casualties on the enemy side. With this, the 
military may become more inclined to start a war. Ironically, when 
everyone thinks and acts this way, the number of wars and the amount 
of violence and destruction in the world will only increase overall.10 

c.	 Another issue with the military robot is that it may fail to distinguish 
between combatants and innocents. In that case, the moral problem 
this creates becomes two fold. First, is it justifiable to let robots take 
the lives of other human beings? Second, can we risk robots killing 
innocents? Some would argue that only people should decide to kill 
other people, not machines.11

d.	 Lastly and as noted in chapter two, many modern AI systems use 
machine learning (ML) techniques that generate algorithms on their 
own from a large amount of data without being given a set of pre-
programmed rules. This contrasts with a more traditional, symbolic AI 
system in which a set of explicit rules are programmed into a machine. 
Unlike those explicit rules in a symbolic AI system, the process that a 
ML system goes through to reach a conclusion from data is opaque to 
humans, including to the designers of the system itself.12 For example, 
a ML system may generate an algorithm that successfully recognizes a 
cat in a photo after going through a large number of photos containing 
cats from a variety of angles and in many different postures. But the 
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resulting algorithm, a complex mathematical formula which identifies 
a cat in a photo, is not something that humans can easily decipher. 
The algorithm is trusted based upon the accuracy of its predictions. 
But why and how it exactly works remains a mystery, and even the 
designers of such an AI system are unable to supply an explanation.13 
This means that reasons behind some of the decisions made by military 
robots and AI systems may not be easily explained and that the military 
decision-making involving those military robots and AI systems may 
lack sufficient justification as a result. Considering the gravity of these 
decisions, the lack of explainability and justification is a serious issue. 

Given these issues, some may argue that in all actions by AI-powered 
robots, humans must be kept in the loop in order to prevent unexpected 
behavior and to ensure that all life-or-death decisions still rest with humans. 
A “human-in-the-loop” AI system is autonomous up to the point of selecting 
a target and even action to take. But a human-in-the-loop system will execute 
the action only when a human confirms it. By contrast, a “human-on-the-
loop” system acts on its own unless it is overridden by a human.14 A “human-
off -the-loop” is most autonomous. It does not require any confirmation to 
engage, and its action cannot be aborted once activated. 

The idea of making all AI systems human-in-the-loop or human-on-the-
loop, however, does not directly address or resolve the moral issues outlined 
above. This is because moral decisions are something that humans struggle 
with without clear answers. Machines can behave as ethically as humans 
manage to do so. In this sense, the moral challenge raised by military robots 
and other ML-driven AI systems is more to do with how humans should act 
rather than machines.

Military Decision-Making with Artificial Intelligence

Ethicists pursue generalizable abstract principles. For this reason, they are 
interested in borderline cases that reveal subtle differences in varying moral 
theories. Their goal is to define what is moral and investigate how moral 
reasoning works. By contrast, engineers desire practical solutions to real-life 
problems and look for guidelines that will help with implementing those 
solutions. Their focus is on creating a set of constraints and if-then state-
ments, which will allow a machine to identify and process morally relevant 
considerations so that it can determine and execute an action.
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On the other hand, the ultimate goal for commanders and soldiers is to 
end a conflict, bring peace, and facilitate restoring or establishing universally 
recognized human values such as freedom, equality, justice, and self-deter-
mination. In order to achieve this goal, they are tasked with making the best 
strategic decisions and taking the most appropriate actions in a battlefield. 
In deciding on those actions, they are also responsible for abiding by moral 
codes and not abdicating their moral responsibility, protecting civilians, and 
minimizing harm, violence, and destruction as much as possible. 

This chapter has discussed some of the ethical issues related to the use 
of military robots and other autonomous AI systems. Unlike ethicists and 
engineers, commanders and soldiers often face complicated situations where 
they must decide and act quickly with potentially life-or-death consequences. 
The complications that they face will only increase as more military robots 
and other AI systems are adopted. 

Will military robots and other AI systems be able to help untangle some 
of those complications, or will they only add more difficulty to military deci-
sions? Before selecting and adopting military robots or other AI systems, 
all military decision makers will need to consider if those robots and other 
AI systems follow the values that the military abides by in doing their job 
and further help commanders and soldiers to do the same. There are already 
several ethical guidelines for AI development and use.15 But guidelines are 
only recommendations for voluntary adoption at varying levels, if adopted 
at all. To ensure the safe and ethical use of AI, the military will also need to 
start developing an appropriate and enforceable regulatory framework for 
the military application of AI.16 
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U.S. Special Operations Command has pushed out on developing the 
hyper-enabled operator (HEO) concept, which seeks to link the war 

fighter to the internet of things (IoT) to achieve cognitive overmatch “at 
the edge.”1 The underlying assumption is that the war fighter will be able to 
make more informed decisions with the ability to locally assess or engage 
reach-back support to understand the operating environment through man-
portable computing and communications technology.2 While technically 
feasible, there are many challenges associated with underlying assumptions. 
First, for the system to work effectively, information must be easily queried, 
but current collection, storage, and dissemination practices are not uniform. 
Overcoming this basic infrastructure and architecture issue is a prereq-
uisite for the HEO to work. Second, the bandwidth necessary to support 
the HEO is also problematic. Generating secure communications depends 
on a number of factors, some of which might be cost prohibitive. Clearly 
understanding the factors surrounding localized bandwidth is a necessity 
in determining when and how the HEO should be employed. Alternatively, 
it is important to note that a HEO could also be a hyper-surveilled operator 
due to the signatures generated from the capabilities. And third, the HEO 
concept presumes security through encrypted communications.

The sections in this chapter discuss each of the three challenges. The first 
section discusses the current state of the art in cloud computing, the issues 
surrounding access permissions, and the basics of blockchain technology 
as a mechanism of encrypted data transfer. The second section reviews the 
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considerations associated with communication “at the edge.” Mobile and 
wireless networks have long existed for citizen and government use but are 
more nuanced when deployed for tactical (i.e., outside the continental U.S. 
[OCONUS]) applications. There are significant cost, logistics, and risk calcu-
lations that go along with enabling the IoT down range. The third and final 
section reviews the basics of quantum computing—a disruptive technology 
that could render contemporary encryption extremely vulnerable and make 
the HEO concept untenable.

The Current State of the Art

While the government frequently lags behind industry in adopting emerg-
ing technologies, a variety of technologies that are well-established in com-
mercial industry are being adopted with increasing success by practitioners 
in the government domain. This section investigates cloud computing as a 
technology for enabling high-volume storage and computational processing, 
as well as enhancing the agility of government information technology (IT) 
services. Blockchain is famous due to its cryptocurrency applications, and 
it is also being considered for a variety of government applications. 

The Cloud—Myths and Realities
Cloud computing traditionally has a large number of myths and realities 
regarding the technologies associated with its use, particularly in the gov-
ernment. This section provides a broad introduction to the topic of cloud 
computing and then addresses a few common myths about it.

Realities. In non-technical terms, cloud computing is a term that refers 
to a method of delivering technical services from a pool of resources that 
are aggregated, scaled, and utilized to match a specified need. A cloud is a 
series of connected computers utilizing software that enables services to be 
executed more efficiently and reliably than using a single computer; using a 
cloud is similar to using someone else’s bigger computer to accomplish a task. 
For example, Gmail3 and Google Docs4 are examples of programs—hosted 
on the Google computers—that store data in a cloud environment and only 
deliver data to the users’ computers upon request.

More technically, cloud computing refers to the infrastructure for elas-
tic, on-demand provisioning of storage, computation, and software service 
delivery from a shared set of resources. When recalling the non-technical 
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description, it may be similar to using someone else’s bigger computer, but 
in reality, the size and location of the resources being used are hidden from 
the user. More formally, the National Institute of Standards and Technology 
(NIST) definition of cloud computing is “a model for enabling ubiquitous, 
convenient, on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and services) 
that can be rapidly provisioned and released with minimal management 
effort or service provider interaction.”5 

The 2011 NIST report also establishes five essential characteristics of cloud 
computing:

On-demand self-service. Cloud users can request computing resources 
from the larger pool of cloud resources without human intervention. 
Broad network access. Cloud resources are accessible through reliable 
networks, both from thick clients (e.g., servers) and thin clients (e.g., 
mobile web browsers). 
Resource pooling. A cloud’s resources are pooled for use by multiple cloud 
users (or customers) and are dynamically allocated based on requests 
and workloads; resources that are no longer required are returned to the 
resource pool. 
Rapid elasticity. Resources and services can be scaled up when required 
and scaled down as workloads reduce. 
Measured service. Cloud users are charged by the cloud provider in 
accordance with the level of usage of the resources; users that use less will 
be charged less and users that use more will be charged more.6 

In short, cloud architectures should provide the ability to rapidly provi-
sion, access, expand, and release computation resources. The NIST cloud 
service models considered in this work include infrastructure as a service 
(IaaS), software as a service (SaaS), and platform as a service (PaaS). The 
following are descriptions of each service model:

Infrastructure as a service. The cloud service provides users the option to 
establish a computing infrastructure that includes the operating system, 
storage, processing features, etc., with which they can instantiate their 
services. This is closest to operating a data center but one in which the 
cloud provider owns the hardware. 
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Platform as a service. The cloud user provisions a computing infra-
structure (e.g., operating system, storage, and computation) from the 
cloud provider and deploys user-owned applications onto the provisioned 
platform.
Software as a service. The cloud user provisions applications running 
on a cloud platform with the application being owned by the cloud pro-
vider and accessed by the cloud user(s) through a web browser or other 
thin client device.7 

NIST also lists four deployment models:

Private cloud. A cloud infrastructure provisioned, managed, and owned 
within an organization.
Community cloud. A cloud infrastructure provisioned and owned by 
related organizations with common use cases and requirements (e.g., 
common security needs or common access protocols).
Public cloud. A cloud owned by an organization (often a commercial 
company) that provisions services to the general public.
Hybrid cloud. The cloud infrastructure comprised of more than one of 
the above cloud types that can be bound together by policy and technol-
ogy to enable their operation.8 

Common services offered by cloud models include elastic storage (storage 
dynamically provisioned based on user need), high performance or parallel 
computing (leveraging multiple computing resources to increase processing 
efficiency), and robust software services (software provided to an expanding 
and contracting user base). Services such as these allow elastic information 
storage, processing, and distribution. Cloud technologies allow consumers of 
cloud services to request resources as needed from a larger pool of resources 
and release those resources after task completion. These interactions are 
fulfilled automatically by the cloud and (in commercial cloud environments) 
users are often charged in accordance with their consumption. 

To users, cloud services appear to be centrally located geographically 
and architecturally. In reality, cloud computing allows the services being 
consumed by the user to be geographically, physically, and architecturally 
distributed while allowing a single point of user interaction. For example, 
when accessing elastic storage services in a cloud environment, the data 
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may be distributed over multiple data stores in multiple countries or even 
continents while maintaining the appearance of being consolidated to a 
single data store at a single location. The distributed nature of the cloud 
nodes allows rapid, seamless failure recovery, as well. In short, clouds allow 
resources to be physically distributed while being logically consolidated.

With cloud computing in the U.S. Government (USG) comes several 
perennial challenges:9

Security. Third party control of government data in non-government 
systems is a primary cloud computing challenge mitigated by the advances 
of the Federal Risk and Authorization Management Program,10 securing 
cloud access points, and utilizing government-tailored cloud services. 
Outstanding challenges exist for insider threats, encryption, vendor 
lock-in, and mitigating attack surfaces.
Acquisition. Government acquisition processes are well suited for enter-
prise-wide, physical systems but not well-suited for metered utilities and 
services such as a cloud computing service. Government practices are 
shifting to adopt more agile practices for acquiring metered utilities and 
services.
Governance. Identifying the roles, responsibilities, and program manage-
ment of incorporating cloud services conflicts with traditional government 
processes. Identifying the systems to migrate to a cloud (independent 
of migration complexity), the organizations or other groups that own 
and pay for migration and maintenance, and the process of managing 
a potentially multi-year development effort pose challenges to typical 
government cloud programs. 
Cultural resistance. Issues of owner and operation responsibilities shift 
and cloud computing disrupts traditional government cultures of data 
and process ownership. Adopting proper development operations prac-
tices, utilizing brokers, and educating leadership are mitigations for the 
cultural challenges of adopting cloud computing.
Cost management. Measuring, monitoring, and restricting growth of 
cloud operations costs is a concern that can be mitigated with cloud 
monitoring tools, cost estimation techniques, service-level agreements 
(SLAs) with cloud providers, or reliance on a cloud broker.
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Migration complexity.11 Not all applications are cloud-ready and must 
be modified for migration purposes. This incurs cost, time, and expertise 
that must be invested to perform an effective cloud migration.

Cloud services are routinely used to process large datasets due to the 
ability to scale up. Technologies, such as Hadoop,12 enable suitable datasets 
to be split between computational nodes (e.g., machines) and processed in 
parallel, making the data processing that would otherwise take hours or days 
possible in minutes. Because of cloud services’ ability to scale, operate in 
parallel, and provide increased computational resources, they are extremely 
useful in big data processing.

Myths
From this broad introduction to the cloud computing domain, we can dispel 
a few of the common myths regarding cloud computing. These myths are 
not unique to the USG but are applicable and represent some of the common 
misconceptions held by some government consumers.

Myth 1: Projects in need of information technology must adopt the 
mindset of cloud first. Successful cloud practitioners within the govern-
ment recommend that prospective cloud adopters consider the business 
and technical needs and value of cloud services rather than strict adher-
ence to “cloud-first”13 mandates. There are some applications and missions 
that are not well suited to leveraging or being hosted in a cloud. While 
it is necessary to consider cloud services as part of the data and hosting 
service options, it is important for cloud adopters and IT managers to 
consider the requirements of their effort and the associated suitability of 
cloud services for the mission.14

Myth 2: Cloud is cheaper than stand-alone data centers. Cloud is 
not always cheaper than a private or stand-alone data center. There 
are a variety of factors that influence the cost of operating in a cloud 
environment such as the utilization, rate of data moving into and out of 
the environment, and provisioning of the applications. It is sometimes 
cheaper to operate in a data center (e.g., when an application has a very 
steady and well-known operating load without a need to scale up for surge 
handling) as opposed to a cloud; a cloud would be better suited for an 
application with widely varying utilizations and loads to take advantage 
of scaling within the cloud. There are a variety of cost estimation tools 
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that can help navigate the factors and compare the cost of operating in 
a cloud versus a data center both in industry and government.15 Regard-
less of cost considerations, cloud computing offers other benefits that 
may outweigh cost impacts. For example, programs may become more 
flexible in their operation, more efficient in their computation, or more 
accessible across an enterprise. Cloud adopters are often encouraged to 
consider aspects of cloud benefits beyond cost when considering a migra-
tion or other cloud adoption.
Myth 3: Cloud migration is simple; “lift-and-shift” is suitable for legacy-
to-cloud migrations. “Lift-and-shift” refers to the act of taking virtual-
ized applications and moving them from a legacy data center to a cloud 
environment without further modification. Cloud practitioners have cited 
that this practice is useful for cloud adopters early in their cloud lifecycle,16 
but that these applications (sometimes referred to as forklifted) do not 
make use of the benefits of operating in a cloud environment, such as 
the ability to seamlessly scale or make use of distributed storage. Often, 
applications must be refactored to be optimized for cloud. In summary, 
lift-and-shift is beneficial for cloud novice organizations to refine their 
cloud policies and practices, but applications often must be refactored to 
make use of cloud features.

Cloud Is Less Secure Than Private Data Centers
Early in the U.S. Federal Government’s venture into cloud adoption, security 
was a major concern. While these concerns still exist,17 many organizations 
have cited improved security after moving to a cloud from a data center. 
In many cases, the security risks in a cloud are the same as those faced by 
traditional IT solutions. However, government organizations and the com-
mercial cloud providers they use are more frequently establishing agreements 
to share the responsibility for safeguarding applications and monitoring 
data and application security. Often, the security of the cloud solution is not 
less than that of a traditional data center but rather an issue with the ability 
of cloud adopters to maintain awareness of security procedures and risk 
mitigations.18 While cloud solutions may be less secure in some cases, it is a 
fallacy to say—ubiquitously—that clouds are less secure than data centers.

With an understanding of distributed and large-scale comput-
ing established in this section, a discussion can begin about technology 
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in which government is interested based on its promise of decentralized 
authority—blockchain.

Blockchain

Blockchain technology has been successfully implemented outside of govern-
ment, most famously as the technical underpinning of popular cryptocur-
rencies such as Bitcoin.19 Blockchain is the foundational technology enabling 
cryptocurrencies used by the public.20 A blockchain allows a decentralized 
network of nodes (i.e., connected computers) to agree upon a record of trans-
actions. As a result, a blockchain can provide a method of decentralized trust 
in a peer-to-peer network. The nodes within the network work to synchro-
nize the state and record of the blockchain transactions. Further, the nodes 
each keep a replicated copy of the blockchain state, adding to resilience in 
the event of node failure or attack. This allows applications—such as those 
in cryptocurrencies—to succeed in a reliable fashion despite lacking cen-
tralized control.

Given the high-profile successes of blockchain-based cryptocurrencies, 
USG organizations—along with private industry and open-source com-
munities—are investigating the applicability of blockchain technologies for 
government use cases (e.g., implementing decentralized trust and author-
ity). Blockchain adoption within the government is just now emerging and 
less mature than cloud technology due in part to the relative newness of the 
technology. This section describes the foundational concepts behind block-
chain technologies and discusses the details, opportunities, and potential 
challenges of government adoption of blockchain.

A blockchain is frequently compared to a ledger of transactions similar 
to those used at traditional banks. For example, each transaction entry in 
a cryptocurrency blockchain provides information regarding the exchange 
of a digital asset. For a supply chain blockchain, each transaction entry may 
have information about tracked objects such as the location and custody of 
shipping containers. These blockchain transactions can be considered the 
fundamental unit of work in a blockchain. The transactions are perma-
nently recorded, synchronized, verified by every node in the peer-to-peer 
network and cryptographically bound into tamper-resistant blocks replicated 
to each node. This distributed synchronization among nodes, redundancy, 
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replication, and cryptographic bound blocks provides significant protection 
against tampering.

Blockchain technology relies on two cryptographic primitives to secure 
the contents of the ledger—cryptographic hash functions (e.g., SHA-256) 
and digital signatures. Crypto-
graphic hashes give nodes in the 
peer-to-peer network the ability 
to efficiently detect changes to the 
ledger. Digital signatures are used 
to verify the cryptographic authen-
ticity of transactions submitted to 
the network and, in some cases (depending on the type of blockchain), to 
verify agreement on a block of transactions. The combination of the two, 
along with the consensus algorithm, form the basis for providing the tamper-
resistance and security properties of blockchain and its ability to operate 
across a trustless network. 

Public and Permissioned Blockchains
There are two kinds of blockchains depending on the needs of the block-
chain stakeholder community—public or permissioned. Public blockchains 
such as Bitcoin and Ethereum21 operate in a completely trustless stakeholder 
environment in which anyone in the world can participate in the blockchain. 
To operate in this type of environment, public blockchains use a crypto-
currency to enhance security through a combination of game theory22 and 
economic incentives. On the other hand, permissioned blockchains are more 
restrictive and designed to operate across a pre-defined group in which the 
group decides who can participate in the network. Within a permissioned 
blockchain there is a stronger sense of identity and control and therefore no 
need to use a cryptocurrency as way of providing economic incentives to help 
secure the network. Interest in blockchain technology across the USG tends 
toward permissioned blockchain due to the level of control over member-
ship achievable by the participating organizations. However, permissioned 
blockchain implementations require increased planning and governance to 
establish the network. Failure to properly implement these aspects could 
lead to a less secure solution.

This distributed synchronization 
among nodes, redundancy, repli-
cation, and cryptographic bound 
blocks provides significant protec-
tion against tampering.
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Benefits, Tradeoffs, and Considerations
Adopting blockchain for the government has a variety of benefits and 
tradeoffs. The primary interest from government adopters is the ability to 
establish trust in a decentralized and trustless environment. Similarly, the 
ability to share information between organizational boundaries has ben-
efits, particularly when no existing mechanisms to establish trust between 
organizations has been established. Even when mechanisms to establish 
trust between organizations exist, the mechanisms usually take the form of 
expensive federation and/or centralized capabilities. Despite the benefits, 
common barriers to blockchain adoption within the government exist, such 
as the need for privacy and confidentiality on the blockchain, transaction 
scalability, and blockchain-to-blockchain connectivity. However, the high 
level of interest in the technology is driving research to address the gaps. 

Government adopters have several aspects to consider prior to imple-
menting blockchain to solve a challenge.23

Transaction throughput. The transaction throughput of current block-
chain implementations vary widely. For example, the Ethereum public 
blockchain averages approximately 12-15 transactions per second.24 A 
permissioned blockchain can potentially achieve thousands of transac-
tions per second25 depending on the application and platform choice.
Information privacy. Information stored on a blockchain is not private. 
This is by design to provide auditability. Government adopters must 
consider the privacy and security impacts of adopting blockchain.
Existing architectures. Many current methodologies and processes are 
designed around a centralized architecture making them incompatible 
with a decentralized blockchain. Adapting existing business processes 
to blockchain technology will—in most cases—require redesign of the 
process to take advantage of the technology.
Algorithms and security. There are a variety of consensus algorithms used 
by permissioned blockchain implementations, and not all may provide 
the same level of security. Adopters should consult blockchain experts 
prior to selecting an algorithm or blockchain platform.
Adoption preparation. Governing a permissioned blockchain requires 
planning (e.g., selecting validator/consensus nodes in the network). Failure 
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of blockchain adopters to carefully plan and prepare for a permissioned 
blockchain could negate some of the security properties of the blockchain.
Blockchain type selection: When selecting the type of blockchain (i.e., 
public versus permissioned), adopters should examine several aspects of 
their challenge domain:

•	 What level of trust exists between participants?
•	 Is there a need for a cryptocurrency?
•	 Is there a need to control who can participate in the network?
•	 Are there data privacy concerns?
•	 Will control of smart contracts be limited to a subset of the participants?

The Potential Impact of Blockchain for Government
While blockchain technologies have been implemented in the private sector 
for trusted transactions, there is high interest but few successful implementa-
tions of blockchain for data management. A successful implementation for 
blockchain-enabled data management is likely coming in the near future 
and may potentially involve storing data on blockchains or using block-
chain for linking/referencing data external to blockchain itself. In the future, 
blockchain technologies may be able to help assert trust for datasets that are 
maintained in a distributed environment, but care should be taken to select 
the appropriate implementation; this is performed through blockchain’s 
ability to provide an audit trail of transaction activity on data. 

With increased emphasis on organizations’ agility and interoperability, 
the ability to establish trust in a decentralized manner for the exchange of 
data is useful. Blockchain technologies can help establish—in a decentralized 
fashion—mutual trust of data without surrendering data (and associated 
control) to a centralized party. For scenarios in which all participating par-
ties are fully trusted, blockchain technologies are not needed; in scenarios 
in which parties are not inherently trusted (either from a technical or pro-
cedural standpoint), blockchain can help establish the trust. 

With the increased interest in blockchain technologies from the Fed-
eral Government, it is critically important to understand the fundamentals, 
usage, and concerns with adopting blockchain. Selecting the appropriate 
implementation, model, and algorithm to be used in the blockchain system 
is essential to government adoption. Selecting the appropriate blockchain 
features can provide the ability to operate trusted transactions in a trustless 
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environment. Based on the current state of the art, permissioned block-
chain solutions are most often best suited to government use cases. The 
government should use care to provide proper planning and preparations 
when establishing a permissioned blockchain system. Additionally, with the 
increased research, development, and emphasis on blockchain throughout 
the industry, government adopters should use care to monitor the state of 
the art and evolutions with blockchain applications.

Bandwidth and Mobile Network Access—CONUS and 
OCONUS

Data exchange is an aspect of big data that is taken for granted in traditional 
cloud computing environments. Often, network connectivity, bandwidth, 
and network availability are challenged within environments where data 
collection is taking place. That data must be exchanged across a network to 
enable decision-making and integration of the collected data with other data-
sets. Information derived from collected and fused data must be delivered 
to operators and decision makers in potentially disconnected environments. 
Because of these constraints and challenges (coupled with the rate at which 
the size of data is increasing), bandwidth in various environments greatly 
impacts how data can be leveraged by those that require information. 

It is increasingly common for data to be collected and exchanged via 
mobile devices and mobile networks. As a major contributing aspect of 
mobile data transmission, this section provides an overview of long-term 
evolution (LTE)26 deployment strategy for CONUS and OCONUS as well as 
the LTE spectrum strategy that should be considered. 

There are four use cases the government deploys or makes use of: mobile 
networks enterprise, tactical, special mission, and limited access.

1.	 The enterprise use case involves acquiring cellular wireless services 
from a LTE provider for government personnel and paying monthly 
subscription fees for a data plan. There is also an upfront cost of pur-
chasing the mobile devices.

2.	 The tactical use case is to build out infrastructure (including both 
radio access network (RAN) and core network) for cellular mobile 
networks, typically for OCONUS deployments. The RAN consists of 
base stations (eNBs in LTE terminology) as well as their supporting 
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infrastructure (e.g., cell towers). Since the government does not own 
spectrum overseas, agreements with host nations must be in place 
first before the network can be built. 

3.	 The special mission use case is for the government to conduct a spe-
cial mission utilizing mobile networks within CONUS in which the 
government owns the network and spectrum. One of the typical use 
cases is for government organizations to build their own infrastructure 
for mobile networks with their own spectrum for video surveillance 
purposes. Another example is the 700 MHz public safety networks 
also known as First Responder Network.27

4.	 The limited access use case can be considered as a subset of the tactical 
use case. Limited access deployments would be in remote locations 
without access to typical LTE infrastructure such as cabling and fiber. 
In this case, the government can use deployable cellular system in a 
box (which contain both base station and the core) or use host nation 
cellular infrastructure.

For tactical, special mission, and limited access use cases, the government 
owns and builds the cellular infrastructure including the cell towers. These 
use cases are sometimes referred to as bring-your-own-network (BYON). 
BYON would involve a temporary network deployment if a fixed solution is 
not feasible. The primary motivators for the government to adopt this type 
of deployment are because it provides faster build-out, better performance, 
higher security, and no subscription cost to meet the requirements of special 
missions. For a special mission use case, the government also owns the spec-
trum over which the network operates, providing more security over the air.

Enterprise Environment. In an enterprise use case environment, there 
are two procurement models to consider: Government purchased services 
from commercial providers and mobile provisioned infrastructure.
Mobile Virtual Network Operator. This deployment model is the most 
commonly used among Department of Defense (DOD) departments 
for the enterprise service use case. LTE carriers provide RANs and core 
networks and perform all services.

The benefit of the government purchased services model is that there 
are no separate costs for infrastructure, maintenance, deployment, and 
personnel. Unfortunately, in this scenario, costs are determined by carriers 
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based on an SLA, and the government cannot control the technology 
used, leading to concerns about security and quality of service (QoS).

A mobile virtual network operator (MVNO) does not own any RANs; 
however, an MVNO may own the core network for applications as well 
as subscriber identity module (SIM) card provisioning and billing. An 
MVNO will purchase the bulk of airtime minutes for voice and gigabytes 
for data at a discounted price. The MVNO then resells the services to 
consumers. The profit margins for MVNOs are typically low since it is a 
very competitive space. 

There are a number of benefits with this deployment model: the cost 
of infrastructure is not the government’s responsibility, the government 
manages and determines the data plan, and the ability of an MVNO to 
cover the whole DOD has the potential of reducing cost compared to 
each DOD department purchasing their own service plan. On the other 
hand, the risk with this model is that the government might not use all the 
data it has purchased in bulk leading to an overpayment for the service. 
Moreover, the government has no control over the cellular infrastructure, 
meaning it cannot control the technology used or security features, does 
not determine when service would be terminated for 3G/4G, cannot 
determine OCONUS coverage, and needs to have agreements with allies 
(which is important for the tactical use case).
Tactical Environment: Government-Owned Cell Tower. The tactical use 
case involves the government deploying a government-owned cell tower 
to create a private network for tactical operation. These are land-based 
4G systems that consist of mobile stations, a point-to-multipoint (PMP) 
base station, and a point-to-point (PTP) station for backhaul services. 
LTE backhaul refers to the connection from the core network to the base 
stations. The base station is referred to as a network in a box (i.e., it has 
both eNB and the core network). PTP backhaul services are provided 
with wireless systems such as microwave, satellite communication, or 
landline systems (e.g., fiber or cable). PTP backhaul services are utilized 
for connecting 4G systems to the host central management system or 
connecting to two or more PMP base station towers.

The benefits of this deployment model are that the government controls 
everything including the schedule, technology, SLA, spectrum, security 
provisioning, and QoS provisioning, and there are no subscription fees. A 



143

Ellis/Grzegorzewski eds.: Big Data for Generals 

disadvantage with this option is that the government increases its threat 
area, meaning there is no layered defense (i.e., the public cellular wire-
less network cannot be used as a buffer). Additionally, the overall cost 
of building out the infrastructures of cellular wireless networks, which 
include capital expenditure and operating expense, is significantly higher 
than acquiring services from LTE carriers.
Consideration for Long-Term Evolution Spectrum Strategy. LTE can 
be utilized by the DOD in many situations, but there are still consider-
ations that need to be made to provide the most efficient deployment of 
the technology. This section discusses the factors in LTE deployments for 
CONUS and OCONUS. In the U.S., there can be more licensing issues 
and less available spectrum to use, whereas overseas, the U.S. must be 
more cautious to not infringe upon other countries’ use of their spectrum. 
The three main types of spectrum usage that can be leveraged for both 
OCONUS and CONUS are licensed, unlicensed, and shared.
Licensed Spectrum. There are two types of licensed spectrum: one owned 
by cellular service providers and the other by 
the government. Both types would provide 
exclusive control over the spectrum band, 
but this would mean that the government 
should purchase or acquire a lease of the 
license. In the U.S. and in many other coun-
tries, there is little overlap between what is 
licensed to federal and commercial users. 
Deploying LTE in the federal bands may require custom base stations 
and mobile devices because the frequency range may not be a commonly 
used by a commercial 3rd Generation Partnership Project LTE band. An 
example in the U.S. lies in 4.4–5.0 GHz. One consequence of this would 
be the increase of overall deployment cost due to the higher prices of 
custom base stations and mobile devices.
Unlicensed Spectrum. The unlicensed spectrum is located around 5.15–
5.925 GHz. A user does not need a license to transmit within this spectrum 
band, but the device transmit power must follow federal and international 
regulations. There are also a few challenges to operating in unlicensed 
bands because no users have explicit priority. This means that users who 
are in that spectrum will have to co-exist with other users. Numerous 

The three main types of 
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techniques are being implemented to mitigate this and allow all users to 
fairly share the spectrum. One way to try to prevent interference is to 
limit the transmitting power of equipment. The Federal Communication 
Commission in CONUS may restrain the power limits depending on 
the region and the band. An operator’s handset is typically not affected; 
however, there can be some limits on the base station. OCONUS would 
follow similar rules for unlicensed bands.
Shared Spectrum. Shared spectrum is mutually shared licensed or unli-
censed spectrum between two or more parties. These parties may or may 
not have exclusive access to the band, but they must be able to deal with 
other incumbents within the band. The Citizens Broadcast Radio Service 
band in 3.5 GHz is utilizing shared spectrum. In the U.S., incumbent users 
that use this band for military radar will have top priority for the band. 
Secondary users will have to purchase priority access licenses (PALs) to 
gain access in a particular region for a temporary period of time. Finally, 
there are also general authorized access users that can use this spectrum 
on a non-interfering basis with incumbents. The DOD would require a 
lease from PAL users to use this band for mobile deployments.
Continental United States Long-Term Evolution Deployments. Con-
sidering the discussions in the prior sections, it is possible to discuss the 
LTE deployments in CONUS and OCONUS and how they differ. In both 
CONUS and OCONUS deployments, there are public and private LTE 
networks that operators can leverage.
Public Long-Term Evolution Networks. Due to the vast number of com-
mercial LTE deployments, the DOD can leverage commercial networks 
to perform activities such as training and coverage for military bases. 
The DOD can negotiate with the LTE carriers before deployment to allow 
access for government use. There are risks to this approach because it is 
based on a commercial network; this means that the information will 
be harder to secure. Another consideration is that because the DOD is 
operating on a commercial network, resources will need to be shared 
with public users. This may mean that service could be impacted, and 
reliability cannot be guaranteed. This could cause issues if security and 
redundancy are the top priorities.

Spectrum purchases will allow government access to bands and there-
fore access to the network, but it will require more money to acquire this 
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spectrum. The LTE acquisitions should be done at the command level (or 
higher) rather than per base or per unit. There also cannot be any bias 
by the government based on carrier. The carriers will need to be chosen 
based on what spectrum is needed, but the actual deployment should 
be operated by the government and remain carrier neutral. If there is a 
need for LTE infrastructure on base or within a command’s zone, these 
carriers should be charged a fee.
Private Long-Term Evolution Networks. If the DOD were to deploy 
private networks, there would be more security and redundancy in the 
network. The DOD would have complete control over the network so it 
could choose the parameters with which it would operate. This option 
provides a secure network but at an increased cost due to hardware and 
operations costs. The acquisition would be on a drastically larger time-
line due to the initial setup of the network. Base stations and an LTE 
core would need to be acquired, deployed, operated, and maintained by 
the government. The steps involved could make this setup lengthy and 
logistically challenging.

The advantage of this network, along with security, would be that 
the base stations could be configured to operate on military licensed 
bands and have no need for commercial spectrum. This would save the 
government money in negotiating commercial spectrum access. The 
base stations could also choose to augment these bands with unlicensed 
spectrum, which would increase data rates and provide another lower-
cost spectrum solution.
Outside the Continental United States Long-Term Evolution Deploy-
ments. Similar to CONUS deployments, OCONUS deployments can use 
public and private LTE networks, each with tradeoffs.
Public Long-Term Evolution Networks. This option would pose more 
security concerns and would require lengthy negotiations with foreign 
countries. If the U.S. were to use another country’s public LTE networks, 
it could not guarantee the security of those connections. This would cause 
a problem for any information traversing through the network. Most 
countries would not willingly allow another country to openly use its 
public networks for military or government purposes.
Private Long-Term Evolution Networks. OCONUS deployments can 
be more challenging because the U.S. will be operating on foreign soil. 
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There are many ways to use the spectrum available, but that requires 
different deployment strategies. Logistical considerations for private, 
government-built networks are still applicable because they will need to 
have the equipment procured and maintained. This will give the DOD 
more freedom to operate as desired and it can choose the bands to sup-
port. It is best to be as diverse as possible with band selections. There 
will be many different operating constraints and diversity can mitigate 
them by offering different solutions where applicable. Therefore, deploy-
ments should use strategies with a combination of licensed, unlicensed, 
and shared spectrum. In some countries, spectrum allocation may not 
cover all of the bands so the DOD could easily adopt the unlicensed and 
shared spectrum techniques required to operate on these bands. If licensed 
bands will be used, then the networks will most likely have to be built-out 
privately by the government and the licenses purchased.
Impact on Data Management. As discussed in this section, there are a 
variety of deployment models for enabling networks for data transmission 
CONUS and OCONUS. The considerations, availability, bandwidth, and 
costs of various deployment models will vary, and the data transmission 
requirements of the use case are likely to drive the decisions for network 
support. If the Special Operations Forces (SOF) enterprise truly wants to 
operate based on a big data foundation, it will have to generate the down-
range architecture for transmitting the data in the first place. Otherwise, 
having all the data scientists in the world will not be able to compensate 
for the lack of input—once again, the garbage in-garbage out conundrum. 
What this section hopefully revealed is that a true enterprise-wide big data 
capability has second- and third-order communication costs associated 
with the capability. Certainly, operating offline is an option, but then the 
benefits of operating at the speed of artificial intelligence (AI) become 
moot. Having a clear sense of the communication options—and the costs 
associated with them—is a preliminary requirement for building out an 
enterprise architecture. Without this step, much of the big data capability 
the SOF enterprise desires will be undermined by a lack of timely data.

Disruptive Technology

Despite the government’s lag behind industry in adopting and driving tech-
nological change, there are technological advances that are being actively 
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monitored and pro-actively driven by government use cases. Quantum com-
puting promises to be a disruptive change to the model of computing in mul-
tiple domains—particularly that of current AI applications. Its application 
toward breaking existing encryption techniques is also well-publicized.28 In 
a variety of domains (and related to the discussion of CONUS and OCONUS 
bandwidth), data must be exchanged and processed as effectively as pos-
sible despite network restrictions. Data exchange, storage, and processing in 
potentially disconnected environments is a current research effort explored 
in this section.

Quantum Computing
Quantum mechanics is the physical theory describing nature at its smallest 
and most fundamental level. Particles such as atoms, electrons, and photons, 
as described by quantum mechanics, behave very differently than cars, tables, 
and other objects that people are accustomed to from everyday experience. 
For example, a quantum system such as an electron can spin in two opposite 
directions at the same time, a quantum phenomenon known as superpo-
sition. Multiple quantum systems can exhibit correlations between them, 
known as entanglement, that are impossible from the classical view of the 
world. Over the past three decades, substantial effort has been spent explor-
ing these phenomena to exploit them and improve a range of technologies. 

Quantum information is the field dedicated to utilizing quantum 
mechanics for the improvement of information-related technologies. These 
technologies are computation, communications/cryptography, and sensing. 
In each of these fields, significant progress has been made, first in academia 
and government laboratories and more recently in industry. This section 
concentrates on quantum computation, the study of how quantum phe-
nomena can improve computation. It discusses what a quantum computer 
can and cannot do, reviews the current state of the field, and outlines some 
of the basic concepts.

Why Quantum Computing? The fundamental component of a quantum 
computer is a qubit (also known as a two-state quantum system parallel to 
the bit in classical computers). However, unlike classical bits, qubits exhibit 
quantum phenomena: they can exist in superpositions and become entan-
gled, resulting in massively parallel computing. These phenomena allow a 
quantum computer to solve certain computation problems more efficiently 
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than is possible for classical computers. The term efficiency is used here 
with respect to the number of resources (number of gates or time) needed 
to implement an algorithm to perform a certain task. This section later 
describes some of the tasks for which algorithms implemented on a quan-
tum computer provide an advantage.

More on Qubits. The fundamental component of a classical computer is a 
bit, a system that can be in one of two possible states: off or on, or alterna-
tively, 0 and 1. In modern computers, a bit may be comprised of a capaci-
tor that will be in the state charged or uncharged. In order to perform an 
algorithm, a series of single- and multi-bit gates are applied to the bits. The 
fundamental unit of a quantum computer is a qubit, a two-state quantum 
system. A possible qubit is a superconducting Josephson junction,29 a small 
loop of superconducting material broken by a thin slab of non-superconduct-
ing material. Current in this loop can rotate clockwise and counterclockwise. 
Another possible qubit is an atomic ion in which an electron can inhabit the 
ground or first excited state.30 Again, the two states can be referred to as 0 and 
1. However, unlike classical bits, qubits can exist in both states simultane-
ously. In such a situation, the qubit is said to be in a “superposition” of states. 
In fact, there are an infinite number of superpositions as the qubit can exist 
in a state anywhere between 0 and 1. The state of the qubit can be described 
as a point on the surface of a sphere whose poles represent the 0 and 1 state. 
Mathematically (and presented for clarity and completeness), the state of the 
qubit can be described as α|0⟩ + β|1⟩ where α and β are complex amplitudes.31 

While one qubit can exist in a superposition of two states, two qubits can 
exist in a superposition of up to four states: 00, 01, 10, and 11. Generalizing 
from the one-qubit case, mathematically the general two-qubit state can be 
described as α|00⟩ + β|01⟩ + γ|10 + �|11.32 If the two qubits are known to be 
in this state and it is possible to then measure one of the two qubits, it can 
be known with certainty the state of the other qubit. Another way to look 
at this is to realize that the state of one of the qubits cannot be properly 
described without stating the state of the second qubit. This high degree of 
correlation, which is impossible for classical systems, is called entanglement 
and is a fundamental resource for many quantum protocols in quantum 
communication and computation.

Breaking Public Key Encryption. A quantum computer could break public 
key encryption (including that used in blockchain ledgers).33 Current public 
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key encryption schemes are secure because they rely on the inefficiency34 of 
a computer in solving mathematical problems such as factorization, discrete 
logarithms, and the elliptic-curve discrete logarithms. Shor’s algorithm,35 
perhaps the most well-known of the quantum algorithms, allows a quantum 
computer to efficiently solve any of these problems, thus rendering practically 
all known public key encryption protocols (including PKI and RSA) insecure.

Searching Unsorted Databases and Function Inversion. Grover’s algo-
rithm36 allows a quantum computer to search an unsorted database utilizing 
only a square root of the number of gates that would be necessary for a clas-
sical computer. The same concept can be used for function inversion. Thus, 
this algorithm is used as a sub-routine in other algorithms such as quantum 
machine learning (ML).

Solving Linear Systems of Equations. The Harrow-Hassidim-Lloyd algo-
rithm37 solves systems of equations (or, equivalently, inverts a matrix) using 
exponentially fewer gates than is possible for a classical computer. While 
there are certain restrictions on the complexity of the equations, a version 
of this algorithm has been shown to efficiently solve for radar cross-sections.

Quantum Simulations. Computational material science is a field that 
attempts to simulate materials at the most basic level. However, the use of 
a classical computer to simulate what is inherently a quantum system is 
highly inefficient. Quantum computers, on the other hand, may properly 
and efficiently simulate such systems.38 Such simulation could provide vital 
insight into the nature of certain materials. For example, the phenomenon 
of high temperature super conduction, which currently suffers from a lack 
of basic theoretical understanding, may be aided by quantum simulations, 
perhaps allowing for the design of material that is superconducting at even 
higher temperatures.

Quantum Machine Learning
Given the advent of ML, it was only a matter of time before the question 
arose as to the utility of quantum computers for these tasks. The answer is 
yes, quantum computers can utilize less samples in sampling algorithms, 
train on smaller training sets, efficiently determine quality of least-squares fit 
for exponentially large datasets, and speed up for support vector machines, 
among other ML protocols.39 
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Not every computational task can be solved more efficiently on a quan-
tum computer. In fact, the entire field of post-quantum cryptography seeks 

to build public key encryption protocols 
based on computation problems that are 
not breakable by a quantum computer. 
Nonetheless, the above potential has 
galvanized researchers and industry 

throughout the world to try to build quantum computers.

Why Are Quantum Computers So Hard to Build?
While nature is fundamentally quantum, people do not experience quantum 
phenomenon in their daily lives. This is because quantum phenomenon 
such as superposition and entanglement get suppressed when the systems 
exhibiting these traits interact with their environment (an interaction known 
as decoherence). Thus, a quantum computer must be built in as complete 
isolation as possible. Simultaneously, the different qubits must interact with 
some sort of external system and with each other to implement computa-
tional gates that make up an algorithm. This balance between isolation and 
interaction creates quite the tightrope for a quantum computer designer. 
Generally, it is assumed that a quantum computer will require the utilization 
of strong magnetic fields or need to operate at extremely low temperatures.

Another reason why quantum computers are so hard to build is because 
of errors in the implementation of basic gates. As previously seen, quantum 
systems can evolve in ways impossible for classical systems. This also means 
that quantum systems can go wrong in ways that are impossible for classi-
cal systems. While a classical bit can be in error only via a bit flip, there are 
an infinite number of possible ways a qubit can be in error. Identifying and 
fixing such errors is complicated by the fact that measurement of a quantum 
system tends to change its state. The solution to this is called quantum error 
correction (QEC), a framework allowing quantum information to be encoded 
in multiple qubits. However, QEC requires a myriad of additional qubits 
and gates, further complicating the task of building a quantum computer.

Current State of Quantum Computing
There is a plethora of quantum computing startups40 and a number of estab-
lished industries41 attempting to construct quantum computers. Currently, 
the most popular and advanced form of qubit are superconducting qubits, 

Not every computational task 
can be solved more efficiently 
on a quantum computer.
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Josephson junctions in which current can rotate clockwise and counterclock-
wise. Google has fabricated a chip with 72 qubits,42 IBM has one with 50 
qubits,43 and Intel has 49 such qubits.44 While these advances have rightfully 
been given much press, the number of qubits alone is an insufficient metric 
in determining how close the world is to a fully capable quantum computer. 
Demonstrating control and accuracy of basic gates is necessary to show a 
path forward. A number of early quantum computers are available to the 
general public. Startup Rigetti Computing45 is providing access to its 19-qubit 
system online. IBM was the first to put such as system online (one with five 
qubits) and has made a 20-qubit system available as a cloud service.46 

Academia and other startups are exploring different types of qubits. 
IonQ47 is investigating trapped-ion quantum computers, and startups 
Xanadu and Sparrow Quantum are looking to build a quantum photonic 
processor. In China, Alibaba has launched an 11-qubit quantum computing 
cloud service48 and Baidu49 has promised a large investment as well. 

Various governments are investing heavily as well. More recently, the 
European Union (1 billion Euros over 10 years) and China ($10 billion) have 
increased funding for quantum information.

Quantum Annealers. Another type of system that utilizes quantum phe-
nomenon for quantum computation, but which is not a full quantum com-
puter, is a quantum annealer. A quantum annealer, as manufactured by the 
Canadian company D-Wave,50 can solve what is known as an Ising problem. 
Such problems can be mapped to certain optimization problems such as 
the traveling salesman problem. The traveling salesman problem is compu-
tationally expensive to solve given current, classical algorithmic solutions. 
It is a problem that—given a graph of nodes (cities) and edges connecting 
the edges of varying weights (distance between cities)—seeks the optimal 
(shortest) route that visits all notes in the graph and returns to the starting 
node. The most advanced D-Wave system currently consists of 2,000 qubits 
(though not with the complete control necessary for quantum computing) 
and utilizes a phenomenon known as quantum tunneling to detour through 
different possible solutions in an effort to find a global minimum (the most 
optimal solution). Recent investigations of the D-Wave quantum annealer 
have concentrated on determining whether the system can outperform all 
classical optimization routines and towards simulating quantum systems.
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When will there be a quantum computer capable of breaking public key 
encryption protocols and what can be done about it? There is a divergence 
of views as to when quantum computers with sufficient resources and accu-
racy to break public key encryption will come online. The estimates range 
from ten years to never, with most experts assuming somewhere between 
twenty to thirty years. While even ten years may seem like a long way off, 
the overhaul of public key encryption to utilize a protocol that is quantum 
resistant is a major task likely to take at least 20 years. Hence, the need is to 
start addressing the challenge now. 

In 2017, the American Innovation and Competitiveness Act tasked NIST 
to “research and identify, or if necessary, develop cryptography standards 
and guidelines for future cybersecurity needs, including quantum-resistant 
cryptography standards.”51 There are two general approaches to cryptog-
raphy that can counter the power of a quantum computer.52 The first is to 
utilize a public key encryption protocol based on a classical algorithm which 
cannot be more efficiently implemented on a quantum computer. One pos-
sible example is cryptographic systems which rely on a symmetric key like 
Advanced Encryption Standard. However, this may be unwieldy for public 
key encryption purposes. Other examples include lattice-based cryptog-
raphy and supersingular elliptic curve isogeny cryptography. The second 
approach is to utilize quantum cryptography. Quantum cryptography (or 
more accurately, quantum key distribution [QKD]) is a secure method of 
sharing a cryptographic key via line of sight. Quantum phenomenon are 
invoked to determine the presence of an eavesdropper during the key shar-
ing process. The key can then be used for a one-time pad. There are several 
commercial QKD systems available. However, the use of one-time pads is 
generally regarded as expensive (one bit of key is needed to encode one bit 
of message) and overkill since security based on algorithm inefficiencies is 
usually sufficient. In addition, this technology has not undergone a proper 
vetting process to ensure robustness and lack of vulnerabilities.

The Future of Tactical Data Processing
While this chapter has touched on traditional cloud architectures and next 
generation quantum computing, users in environments with unreliable con-
nections between computing resources cannot make use of these resources. 
Traditional cloud computing architectures—according to official NIST defi-
nitions—must offer several features: on demand self-service, broad network 
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access, resource pooling, rapid elasticity, and measured service. They also 
offer IaaS, PaaS, and SaaS options for operation within a cloud.

Tactical clouds are being investigated to enable cloud services to be imple-
mented in potentially challenged environments.53 Tactical clouds operate in 
contested and often disconnected environments using smaller-form devices 
than their traditional cloud counterparts. These devices are often physical 
components that form the cloud rather than the virtual components that are 
provisioned on demand in a traditional cloud. As such, what are considered 
tactical clouds often do not meet the NIST definition of a cloud because of 
their inability to satisfy and offer the required features; often, tactical clouds 
are more specialized and limited (e.g., offering potentially only infrastructure 
and distributed computing/storage) rather than the full spectrum of cloud 
features. While specific definitions of a tactical cloud will exist and likely 
vary, several elements of a tactical cloud are common across implemen-
tations. Primarily, there exists a need to connect separate computational 
elements within potentially disconnected or austere environments to one 
another to share data, computational responsibilities, or knowledge. In most 
cases, a larger traditional cloud service exists in a non-tactical environment 
to which the tactical components send, receive, and synchronize data. 

To operate at the tactical edge, the tactical components of the architecture 
frequently leverage techniques such as shared local caches, message routing, 
and caching and queuing data transfer to operate when disconnected. Fur-
ther, data prioritization and shared computational responsibilities are imple-
mented in the tactical application layer. Due to the potentially unreliable 
networked connections between cloud members, nodes, or other elements, 
applications must offer techniques that provide the appearance of reliable 
connectivity to the user and mitigate the impact of unreliable connections 
on the cloud’s operation. For example, queueing requests or accessing local 
peer caches for responses to information requests are common tactical cloud 
techniques. Further, data is often not transmitted in its entirety but rather 
signatures are computed, summarizing information is derived, or high pri-
ority data is transmitted at the expense of raw data.

Again, while other interpretations of tactical cloud computing may vary, 
they share the need to operate, access, and maintain a computation capability 
in a tactical environment.

Coupled with the challenges facing bandwidth CONUS and OCONUS, 
the ability to process data effectively independent of global networking is 
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beneficial for operators in disconnected, interrupted, and low-bandwidth 
environments. Localized networks such as Bluetooth, radio frequency, or 
localized Wi-Fi can help exchange data locally to enable the local distributed 
computation similar to that in a fully capable cloud. This model also assumes 
trust can be established between participating nodes, a problem not present 
in traditional cloud models.54

Access to information derived from data at the tactical edge may be essen-
tial to mission success. As such, access to computation resources or cloud 
architecture to process data at the point of collection can help increase mis-
sion effectiveness.

Planning Appropriately

Federal government agencies often establish plans and strategies for adopting 
future disruptive technologies along with currently in-development tech-

nologies that are not yet mature 
enough for government adoption. 
Understanding the implications 
of design decisions and the way 
in which solutions are considered, 

evaluated, and adopted have an impact on the level of effort and poten-
tial successes of technology adoption programs. This section discusses two 
aspects of program planning. The first is the selection of software and the 
impact this has on a project. The second is a set of recommended best prac-
tices for engaging with emerging technology domains.

Software Selection
There are a variety of software types that can be considered during project 
and program planning. Selecting a type of software to adopt should be driven 
by the business and technological needs of the project. Due to the differences, 
trade-offs, and benefits of various software types, the utility and suitability 
of a type of software will vary depending on the intended implementation 
and use case. Prior to selecting a type of software to procure, stakeholders 
should work to understand the full software lifecycle to include the ability 
to support, develop, and adopt the software over time. Market research and 
alternatives analysis can help drive the decision-making as well.

Open-source software is typically community supported and provides 
open access to the software and associated source code. Open-source 

Access to information derived from 
data at the tactical edge may be 
essential to mission success.
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software is often community supported with many contributors that help 
maintain the code base or even adapt the software to add functionality. 
Shareware is proprietary software that is provided to users with no cost but 
is still profitable to the software owners. Commercial off-the-shelf (COTS) 
and government off-the-shelf (GOTS) software is proprietary software that 
is available for purchase and is often fully supported by a commercial or gov-
ernment entity. COTS and shareware software are centrally controlled and 
developed as opposed to the community supported nature of open-source 
software. This section explores examples and varieties of each software type 
and discusses the general trade-offs using each in a project.

Open Source and Free and Open Source. Open-source (often referred to as 
free and open-source software or FOSS) project usage is gaining popularity 
and attention in the federal government. The quality of available tools and 
the ability to customize existing applications drive the appeal. However, 
utilizing open-source software often means it must be maintained and sup-
ported in-house utilizing a software team. Open source projects may require 
customization for effective utilization as well. This is the trade-off between 
the low (i.e., free) up-front software costs, the customizability, and the need 
to support in-house.

Due to these considerations, government adopters must consider the 
intended use and ability to operate without third party support for the soft-
ware (and the resulting potentially elevated level of effort). Open-source 
software may not be approved for secure environments, creating a longer 
process of adoption for classified uses. Examples of open-source software 
that might be used for data analysis in the government includes D3.js55 for 
browser-based data visualization or NumPy56 for scientific computing in 
Python.

Commercial Off-the-Shelf and Government Off-the-Shelf Software. COTS 
software is widely understood and more typically acquired for government 
projects. Similarly, GOTS projects are available and often have the same 
characteristics of COTS.57 Government users of COTS typically purchase 
licenses for software that is fully supported by the vendor. This software is 
more frequently approved and vetted for sensitive environments and uses 
than open-source software. Because of these features, COTS software is typi-
cally easier to procure and implement as compared to open source. Examples 
of COTS products include Microsoft products.58 While the cost for licenses 
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is higher than FOSS, the robustness and support of the software is typically 
higher and often requires less in-house expertise.

Shareware has features of COTS and open source. In general, shareware 
source code is not exposed (as it is in open source) and it is available for use 
without a license (as opposed to the licensing models in COTS). Shareware 
software is provided to users for no initial cost, but there is a model for profit 
by the software maintainers. There are a variety of models for software ven-
dors to profit from shareware. 

In the freemium model, basic or bounded functionality is available for 
no cost but with increased features or enhanced usage available for a fee. 
Examples of broadly available freemium services include DropBox59 (small, 
bounded storage available for free, and advanced features and increased 
storage available for purchase) and Amazon Web Services60 (which is free 
for a small amount of computation but expanded usage must be purchased). 
Adware applications are free to use but inject advertisements into the soft-
ware, either as barriers to unlocking content or on-screen real estate. In other 
cases, shareware software is provided with limited functionality. Demoware 
and trialware are both abbreviated versions of a full production package. 
These are related to crippleware, which is a software package that degrades 
over time until a license is purchased. Donationware solicits monetary dona-
tions from users. This model is typical with non-profit organizations that 
provide software (e.g., The Apache Foundation61). Finally, freeware is a soft-
ware package that is offered for free and often has a governing or guiding 
board that may be sponsored by participating organizations. The R Project62 
is an example of freeware. In current markets, shareware (and even COTS) 
is often delivered as SaaS to users via a web browser for free with premium 
upgrades available (e.g., Slack63).

Preparing for the Future
Planning for disruptive technology adoption five to ten years in the future 
is difficult without a foundational set of variables regarding the indicators 
and specific markets being disrupted as inputs to an effective prediction 
model.64 The ability to predict and assess the effect of disruptive technolo-
gies is a debate among academic researchers. Government has the ability 
to monitor technical evolutions to understand their impact on government 
missions through agile innovation practices (e.g., focusing on agile principles 
to understand, re-vector, and identify direction for innovative solutions to 
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gaps and needs). This can be performed using rapid prototyping on emergent 
technologies to better understand the current needs, solutions, and require-
ments moving forward. 

The U.S. Federal Government has invested in organizations and physical 
and virtual spaces in which innovation is fostered. These innovation entities 
often encourage the collaboration and collective effort of academics, industry 
representatives, and other partners (e.g., hobbyists and startups). Through 
rapid prototyping, collaboration, evaluation, testing, and development, the 
participants and government sponsors are able to refine approaches, better 
understand gaps, and foster ideas for solutions—both conventional and non-
conventional—to government challenges. Ultimately, government innovation 
requires a culture that supports an open environment for the exchange of 
ideas. 

By incorporating agile practices into technology outreach or evalua-
tion, government adopters can stay more informed on the latest aspects of 
potential technical solutions for challenges. Engaging with innovation cells65 
allows government to engage and create relationships with organizations 
and practitioners that may not typically participate in government innova-
tion activities. In the process of this innovation, several best practices and 
features of optimal innovation environments exist:

•	 Opportunities for engagement with diverse, non-traditional partner-
ships to leverage the best in breed from across the domain

•	 Freedom to fail and fail fast to receive immediate feedback on what 
does and does not work well with regards to a gap, which will also 
allow gaps and needs to be refined by the government based on lessons 
learned during the investigation

•	 Feedback loops to apply the state-of-the-possible technologies to the 
government gap

•	 A test and evaluation environment with a direct path to adoption by 
government users

With an environment and culture that fosters innovation, government 
adopters can maintain awareness of current state of the art technologies. 
While this does not directly help government adopters and practitioners 
forecast disruption in a domain, the engagements with industry, academia, 
and peer government can help raise awareness of current gaps and solutions 
in other domains and monitor the progress of the respective technologies.
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AI		  artificial intelligence

BYON		  bring-your-own-network

CONUS	 continental United States

COTS		  commercial off-the-shelf 

DDS		  Defense Digital Service 

DL 		  deep learning 

DOD		  Department of Defense 

F3EAD		  find, fix, finish, exploit, analyze, disseminate 

FOSS		  free and open-source software 

GFT		  Google Flu Trends 

GOTS		  government off-the-shelf 

GS		  general schedule 

HEO		  hyper-enabled operator

HQ		  headquarters 

IaaS		  infrastructure as a service 

IC		  intelligence community 

IED		  improvised explosive device 

IoT		  internet of things

ISR		  intelligence, surveillance, and reconnaissance 

IT		  information technology 

JSOU		  Joint Special Operations University

LTE		  long-term evolution 

ML		  machine learning 

MVNO		 mobile virtual network operator 
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NGA		  National Geospatial Agency 

NIST		  National Institute of Standards and Technology 

NLP		  natural language processing 

NLU		  natural language understanding 

OCONUS	 outside the continental United States 

OPORD	 operations order

OS		  operating system 

OSINT		  open-source intelligence 

PaaS		  platform as a service 

PAL		  priority access license 

PMP		  point-to-multipoint 

PTP		  point-to-point 

QEC		  quantum error correction 

QKD		  quantum key distribution

QoS		  quality of service 

RAN		  radio access network

SaaS		  software as a service 

SIM		  subscriber identity module

SLA		  service-level agreement 

SME		  subject matter expert

SOF		  Special Operations Forces 

TLP		  troop leading procedure

UAV		  unmanned aerial vehicle

USG		  United States Government 

USSOCOM	 United States Special Operations Command 

WARNORD	 warning order


